Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34564614

RESUMO

Thermally processed Buthus martensii Karsch scorpions are a traditional Chinese medical material for treating various diseases. However, their pharmacological foundation remains unclear. Here, a new degraded peptide of scorpion toxin was identified in Chinese scorpion medicinal material by proteomics. It was named BmK86-P1 and has six conserved cysteine residues. Homology modeling and circular dichroism spectra experiments revealed that BmK86-P1 not only contained representative disulfide bond-stabilized α-helical and ß-sheet motifs but also showed remarkable stability at test temperatures from 20-95 °C. Electrophysiology experiments indicated that BmK86-P1 was a highly potent and selective inhibitor of the hKv1.2 channel with IC50 values of 28.5 ± 6.3 nM. Structural and functional dissection revealed that two residues of BmK86-P1 (i.e., Lys19 and Ile21) were the key residues that interacted with the hKv1.2 channel. In addition, channel chimeras and mutagenesis experiments revealed that three amino acids (i.e., Gln357, Val381 and Thr383) of the hKv1.2 channel were responsible for BmK86-P1 selectivity. This research uncovered a new bioactive peptide from traditional Chinese scorpion medicinal material that has desirable thermostability and Kv1.2 channel-specific activity, which strongly suggests that thermally processed scorpions are novel peptide resources for new drug discovery for the Kv1.2 channel-related ataxia and epilepsy diseases.


Assuntos
Canal de Potássio Kv1.2/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/toxicidade , Animais , China , Humanos , Medicina Tradicional Chinesa , Escorpiões/química
2.
Physiol Rep ; 7(12): e14147, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31222975

RESUMO

Expression of Kv1.2 within Kv1.x potassium channel complexes is critical in maintaining appropriate neuronal excitability and determining the threshold for action potential firing. This is attributed to the interaction of Kv1.2 with a hitherto unidentified protein that confers bimodal channel activation gating, allowing neurons to adapt to repetitive trains of stimulation and protecting against hyperexcitability. One potential protein candidate is the sigma-1 receptor (Sig-1R), which regulates other members of the Kv1.x channel family; however, the biophysical nature of the interaction between Sig-1R and Kv1.2 has not been elucidated. We hypothesized that Sig-1R may regulate Kv1.2 and may further act as the unidentified modulator of Kv1.2 activation. In transiently transfected HEK293 cells, we found that ligand activation of the Sig-1R modulates Kv1.2 current amplitude. More importantly, Sig-1R interacts with Kv1.2 in baseline conditions to influence bimodal activation gating. These effects are abolished in the presence of the auxiliary subunit Kvß2 and when the Sig-1R mutation underlying ALS16 (Sig-1R-E102Q), is expressed. These data suggest that Kvß2 occludes the interaction of Sig-1R with Kv1.2, and that E102 may be a residue critical for Sig-1R modulation of Kv1.2. The results of this investigation describe an important new role for Sig-1R in the regulation of neuronal excitability and introduce a novel mechanism of pathophysiology in Sig-1R dysfunction.


Assuntos
Canal de Potássio Kv1.2/fisiologia , Receptores sigma/fisiologia , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.2/efeitos dos fármacos , Canal de Potássio Kv1.2/metabolismo , Técnicas de Patch-Clamp/métodos , Fenazocina/análogos & derivados , Fenazocina/antagonistas & inibidores , Fenazocina/farmacologia , Receptores sigma/agonistas , Receptores sigma/metabolismo , Superfamília Shaker de Canais de Potássio/fisiologia , Receptor Sigma-1
3.
Toxicon ; 87: 6-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24878374

RESUMO

Margatoxin (MgTx), an alpha-KTx scorpion toxin, is considered a selective inhibitor of the Kv1.3K + channel. This peptide is widely used in ion channel research; however, a comprehensive study of its selectivity with electrophysiological methods has not been published yet. The lack of selectivity might lead to undesired side effects upon therapeutic application or may lead to incorrect conclusion regarding the role of a particular ion channel in a physiological or pathophysiological response either in vitro or in vivo. Using the patch-clamp technique we characterized the selectivity profile of MgTx using L929 cells expressing mKv1.1 channels, human peripheral lymphocytes expressing Kv1.3 channels and transiently transfected tsA201 cells expressing hKv1.1, hKv1.2, hKv1.3, hKv1.4-IR, hKv1.5, hKv1.6, hKv1.7, rKv2.1, Shaker-IR, hERG, hKCa1.1, hKCa3.1 and hNav1.5 channels. MgTx is indeed a high affinity inhibitor of Kv1.3 (Kd = 11.7 pM) but is not selective, it inhibits the Kv1.2 channel with similar affinity (Kd = 6.4 pM) and Kv1.1 in the nanomolar range (Kd = 4.2 nM). Based on our comprehensive data MgTX has to be considered a non-selective Kv1.3 inhibitor, and thus, experiments aiming at elucidating the significance of Kv1.3 in in vitro or in vivo physiological responses have to be carefully evaluated.


Assuntos
Canal de Potássio Kv1.3/antagonistas & inibidores , Neurotoxinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Linhagem Celular , Humanos , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.2/efeitos dos fármacos , Canal de Potássio Kv1.3/genética , Linfócitos/metabolismo , Técnicas de Patch-Clamp , Venenos de Escorpião/farmacologia
4.
Assay Drug Dev Technol ; 10(4): 313-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22574656

RESUMO

Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.


Assuntos
Automação/métodos , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/efeitos dos fármacos , Técnicas Analíticas Microfluídicas , Animais , Células CHO , Canais de Cloreto/efeitos dos fármacos , Cricetinae , Cricetulus , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Células HEK293 , Humanos , Canal de Potássio Kv1.2/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Receptores Colinérgicos/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Reprodutibilidade dos Testes , Bloqueadores dos Canais de Sódio/farmacologia , Soluções
5.
J Nat Prod ; 72(5): 830-4, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19331340

RESUMO

Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Canal de Potássio Kv1.2/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Uncaria/química , Animais , Medicamentos de Ervas Chinesas/química , Humanos , Alcaloides Indólicos/química , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/química , Oxindóis
7.
J Neurochem ; 106(5): 2093-105, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18627436

RESUMO

Microglial cells are endowed with different potassium ion channels but their expression and specific functions have remained to be fully clarified. This study has shown Kv1.2 expression in the amoeboid microglia in the rat brain between 1 (P1) and 10 (P10) days of age. Kv1.2 expression was localized in the ramified microglia at P14 and was hardly detected at P21. In postnatal rats exposed to hypoxia, Kv1.2 immunoreactivity in microglia was markedly enhanced. Quantitative RT-PCR analysis confirmed Kv1.2 mRNA expression in microglial cells in vitro. It was further shown that Kv1.2 and protein expression coupled with that of interleukin 1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) was significantly increased when the cells were subjected to hypoxia. The same increase was observed in cells exposed to adenosine 5'-triphosphate (ATP) and lipopolysaccharide (LPS). Concomitantly, the intracellular potassium concentration decreased significantly. Blockade of Kv1.2 channel with rTityustoxin-Kalpha (TsTx) resulted in partial recovery of intracellular potassium concentration accompanied by a reduced expression of IL-1beta and TNF-alpha mRNA and protein expression and intracellular reactive oxygen species (ROS) production. We conclude that Kv1.2 in microglia modulates IL-1beta and TNF-alpha expression and ROS production probably by regulating the intracellular potassium concentration.


Assuntos
Citocinas/metabolismo , Encefalite/metabolismo , Canal de Potássio Kv1.2/fisiologia , Microglia/metabolismo , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Movimento Celular/imunologia , Células Cultivadas , Encefalite/imunologia , Encefalite/fisiopatologia , Gliose/imunologia , Gliose/metabolismo , Gliose/fisiopatologia , Hipóxia Encefálica/imunologia , Hipóxia Encefálica/metabolismo , Mediadores da Inflamação/farmacologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Canal de Potássio Kv1.2/efeitos dos fármacos , Canal de Potássio Kv1.2/genética , Camundongos , Microglia/imunologia , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 293(4): H2231-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17675568

RESUMO

Small coronary arteries (SCA) from diabetic rats exhibit enhanced peroxynitrite (ONOO(-)) formation and concurrent impairment of voltage-dependent potassium (K(v)) channel function. However, it is unclear whether ONOO(-) plays a causative role in this impairment. We hypothesized that functional loss of K(v) channels in coronary smooth muscle cells (SMC) in diabetes is due to ONOO(-) with subsequent tyrosine nitration of K(v) channel proteins. Diabetic rats and nondiabetic controls were treated with or without ebselen (Eb) for 4 wk. SCA were prepared for immunohistochemistry (IHC), immunoprecipitation (IP) followed by Western blot (WB), videomicroscopy, and patch-clamp analysis. IHC revealed excess ONOO(-) in SCA from diabetic rats. IP and WB revealed elevated nitration of the K(v)1.2 alpha-subunit and reduced K(v)1.2 protein expression in diabetic rats. Each of these changes was improved in Eb-treated rats. Protein nitration and K(v)1.5 expression were unchanged in SCA from diabetic rats. Forskolin, a direct cAMP activator that induces K(v)1 channel activity, dilated SCA from nondiabetic rats in a correolide (Cor; a selective K(v)1 channel blocker)-sensitive fashion. Cor did not alter the reduced dilation to forskolin in diabetic rats; however, Eb partially restored the Cor-sensitive component of dilation. Basal K(v) current density and response to forskolin were improved in smooth muscle cells from Eb-treated DM rats. We conclude that enhanced nitrosative stress in diabetes mellitus contributes to K(v)1 channel dysfunction in the coronary microcirculation. Eb may be beneficial for the therapeutic treatment of vascular complications in diabetes mellitus.


Assuntos
Antioxidantes/farmacologia , Azóis/farmacologia , Vasos Coronários/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Canal de Potássio Kv1.2/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Ácido Peroxinitroso/metabolismo , Tirosina/análogos & derivados , Vasodilatação/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Antioxidantes/uso terapêutico , Azóis/uso terapêutico , Colforsina/farmacologia , Vasos Coronários/enzimologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Relação Dose-Resposta a Droga , Ativadores de Enzimas/farmacologia , Isoindóis , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.5/efeitos dos fármacos , Canal de Potássio Kv1.5/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Compostos Organosselênicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Projetos de Pesquisa , Triterpenos/farmacologia , Tirosina/metabolismo
9.
Physiol Res ; 56(6): 807-813, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17087603

RESUMO

To understand the contribution of potassium (K+) channels, particularly alpha-dendrotoxin (D-type)-sensitive K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits), to the generation of neuronal spike output we must have detailed information of the functional role of these channels in the neuronal membrane. Conventional intracellular recording methods in current clamp mode were used to identify the role of alpha-dendrotoxin (alpha-DTX)-sensitive K+ channel currents in shaping the spike output and modulation of neuronal properties of cerebellar Purkinje neurons (PCs) in slices. Addition of alpha-DTX revealed that D-type K+ channels play an important role in the shaping of Purkinje neuronal firing behavior. Repetitive firing capability of PCs was increased following exposure to artificial cerebrospinal fluid (aCSF) containing alpha-DTX, so that in response to the injection of 0.6 nA depolarizing current pulse of 600 ms, the number of action potentials insignificantly increased from 15 in the presence of 4-AP to 29 action potentials per second after application of DTX following pretreatment with 4-AP. These results indicate that D-type K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits) may contribute to the spike frequency adaptation in PCs. Our findings suggest that the activation of voltage-dependent K+ channels (D and A types) markedly affect the firing pattern of PCs.


Assuntos
Venenos Elapídicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Células de Purkinje/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , 4-Aminopiridina/farmacologia , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Canal de Potássio Kv1.2/efeitos dos fármacos , Canal de Potássio Kv1.2/fisiologia , Canal de Potássio Kv1.6/efeitos dos fármacos , Canal de Potássio Kv1.6/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Ratos , Ratos Sprague-Dawley , Superfamília Shaker de Canais de Potássio/efeitos dos fármacos
10.
Neurosci Lett ; 412(2): 108-13, 2007 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-17174470

RESUMO

Bis(7)-tacrine [bis(7)-tetrahydroaminacrine] acts as an AChE inhibitor and also exerts modulatory effects on many ligand-gated ion channels and voltage-gated Ca(2+) and K(+) channels. It has been reported previously that tacrine and some other AChE inhibitors suppressed I(K(A)) in central and peripheral neurons. The present study aimed to explore whether bis(7)-tacrine could modulate the function of native delayed rectifier potassium channels in DRG neurons and K(V)1.2 encoded potassium channels expressed in oocytes. We found that both delayed rectifier potassium currents (I(K(DR))) in rat DRG neurons and the currents recorded from oocytes expressing K(V)1.2 (I(K(K(V)1.2))) were suppressed by bis(7)-tacrine, the potency of which was two orders greater than that of tacrine. The IC(50) values for bis(7)-tacrine and tacrine inhibition of I(K(KD)) in DRG neurons were 0.72+/-0.05 and 58.3+/-3.7 microM, respectively; while the two agents inhibited I(K(K(V)1.2)) in oocytes with an IC(50) of 0.24+/-0.06 and 102.1+/-21.5 microM, respectively. The possible mechanism for bis(7)-tacrine inhibition of I(K(A)) and I(K(K(V)1.2)) was identified as the suppression of their activation, inactivation.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Canal de Potássio Kv1.2/metabolismo , Neurônios Aferentes/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Tacrina/análogos & derivados , Animais , Células Cultivadas , Inibidores da Colinesterase/farmacologia , Canais de Potássio de Retificação Tardia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Gânglios Espinais/citologia , Técnicas de Transferência de Genes , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.2/efeitos dos fármacos , Canal de Potássio Kv1.2/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tacrina/farmacologia , Xenopus
11.
J Neurophysiol ; 95(4): 2032-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16306173

RESUMO

The basolateral amygdala (BLA) is the major amygdaloid nucleus distributed with mu opioid receptors. The afferent input from the BLA to the central nucleus of the amygdala (CeA) is considered important for opioid analgesia. However, little is known about the effect of mu opioids on synaptic transmission in the BLA. In this study, we examined the effect of mu opioid receptor stimulation on the inhibitory and excitatory synaptic inputs to CeA-projecting BLA neurons. BLA neurons were retrogradely labeled with a fluorescent tracer injected into the CeA of rats. Whole cell voltage-clamp recordings were performed on labeled BLA neurons in brain slices. The specific mu opioid receptor agonist, (D-Ala2,N-Me-Phe4,Gly5-ol)-enkephalin (DAMGO, 1 microM), significantly reduced the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in 77% of cells tested. DAMGO also significantly decreased the peak amplitude of evoked IPSCs in 75% of cells examined. However, DAMGO did not significantly alter the frequency of mEPSCs or the peak amplitude of evoked EPSCs in 90% and 75% of labeled cells, respectively. Bath application of the Kv channel blockers, 4-AP (Kv1.1, 1.2, 1.3, 1.5, 1.6, 3.1, 3.2), alpha-dendrotoxin (Kv1.1, 1.2, 1.6), dendrotoxin-K (Kv1.1), or tityustoxin-Kalpha (Kv1.2) each blocked the inhibitory effect of DAMGO on mIPSCs. Double immunofluorescence labeling showed that some of the immunoreactivities of Kv1.1 and Kv1.2 were colocalized with synaptophysin in the BLA. This study provides new information that activation of presynaptic mu opioid receptors primarily attenuates GABAergic synaptic inputs to CeA-projecting neurons in the BLA through a signaling mechanism involving Kv1.1 and Kv1.2 channels.


Assuntos
Tonsila do Cerebelo/fisiologia , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/fisiologia , Neurônios Aferentes/fisiologia , Receptores Opioides mu/fisiologia , Ácido gama-Aminobutírico/fisiologia , Tonsila do Cerebelo/química , Analgésicos Opioides/farmacologia , Animais , Bicuculina/farmacologia , Venenos Elapídicos/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canal de Potássio Kv1.1/análise , Canal de Potássio Kv1.1/efeitos dos fármacos , Canal de Potássio Kv1.2/análise , Canal de Potássio Kv1.2/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides/fisiologia , Receptores Opioides mu/agonistas , Venenos de Escorpião/farmacologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Sinaptofisina/análise , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...