Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(10): 2360-2375, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787516

RESUMO

OBJECTIVE: Platelet activation by stimulatory factors leads to an increase in intracellular calcium concentration ([Ca2+]i), which is essential for almost all platelet functions. Modulation of Ca2+ influx and [Ca2+]i in platelets has been emerging as a possible strategy for preventing and treating platelet-dependent thrombosis. Voltage-gated potassium 1.3 channels (Kv1.3) are highly expressed in platelets and able to regulate agonist-evoked [Ca2+]i increase. However, the role of Kv1.3 channels in regulating platelet functions and thrombosis has not yet been elucidated. In addition, it is difficult to obtain a specific blocker for this channel, since Kv1.3 shares identical drug-binding sites with other K+ channels. Here, we investigate whether specific blockade of Kv1.3 channels by monoclonal antibodies affects platelet functions and thrombosis. Approach and Results: In this study, we produced the anti-Kv1.3 monoclonal antibody 6E12#15, which could specifically recognize both human and mouse Kv1.3 proteins and sufficiently block Kv1.3 channel currents. We found Kv1.3 blockade by 6E12#15 inhibited platelet aggregation, adhesion, and activation upon agonist stimulation. In vivo treatment with 6E12#15 alleviated thrombus formation in a mesenteric arteriole thrombosis mouse model and protected mice from collagen/epinephrine-induced pulmonary thromboembolism. Furthermore, we observed Kv1.3 regulated platelet functions by modulating Ca2+ influx and [Ca2+]i elevation, and that this is mediated in part by P2X1. Interestingly, Kv1.3-/- mice showed impaired platelet aggregation while displayed no abnormalities in in vivo thrombus formation. This phenomenon was related to more megakaryocytes and platelets produced in Kv1.3-/- mice compared with wild-type mice. CONCLUSIONS: We showed specific inhibition of Kv1.3 by the novel monoclonal antibody 6E12#15 suppressed platelet functions and platelet-dependent thrombosis through modulating platelet [Ca2+]i elevation. These results indicate that Kv1.3 could act as a promising therapeutic target for antiplatelet therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Plaquetas/efeitos dos fármacos , Fibrinolíticos/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Inibidores da Agregação Plaquetária/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Embolia Pulmonar/prevenção & controle , Trombose/prevenção & controle , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Canal de Potássio Kv1.3/sangue , Canal de Potássio Kv1.3/deficiência , Canal de Potássio Kv1.3/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos , Embolia Pulmonar/sangue , Embolia Pulmonar/genética , Embolia Pulmonar/metabolismo , Transdução de Sinais , Trombose/sangue , Trombose/genética , Trombose/metabolismo
2.
Anal Biochem ; 556: 70-77, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29936096

RESUMO

Despite the significant role integral membrane proteins (IMPs) play in the drug discovery process, it remains extremely challenging to express, purify, and in vitro stabilize them for detailed biophysical analyses. Cell-free transcription-translation systems have emerged as a promising alternative for producing complex proteins, but they are still not a viable option for expressing IMPs due to improper post-translational folding of these proteins. We have studied key factors influencing in vitro folding of cell-free-expressed IMPs, particularly oligomeric proteins (i.e., ion channels). Using a chimeric ion channel, KcsA-Kv1.3 (K-K), as a model IMP, we have investigated several physiochemical determinants including artificial bilayer environments (i.e., lipid, detergent) for K-K in vitro stabilization. We observed that fusion of a 'superfolder' green fluorescent protein (sfGFP) to K-K as a protein expression reporter not only improves the protein yield, but surprisingly facilitates the K-K tetramer formation, probably by enhancing the solubility of monomeric K-K. Additionally, anionic lipids (i.e., DMPG) were found to be essential for the correct folding of cell-free-expressed monomeric K-K into tetramer, underscoring the importance of lipid-protein interaction in maintaining structural-functional integrity of ion channels. We further developed methods to integrate cell-free-expressed IMPs directly onto a biosensor chip. We employed a solid-supported lipid bilayer onto the surface plasmon resonance (SPR) chip to insert nascent K-K in a membrane. In a different approach, an anti-GFP-functionalized surface was used to capture in situ expressed K-K via its sfGFP tag. Interestingly, only the K-K-functionalized capture surface prepared by the latter strategy was able to interact with K-K's small binding partners. This generalizable approach can be further extended to other membrane proteins for developing direct binding assays involving small ligands.


Assuntos
Técnicas Biossensoriais/métodos , Canal de Potássio Kv1.3 , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas , Biossíntese de Proteínas , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Canal de Potássio Kv1.3/sangue , Canal de Potássio Kv1.3/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ligação Proteica
3.
J Physiol ; 588(Pt 9): 1399-406, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20308249

RESUMO

A delayed rectifier voltage-gated K(+) channel (Kv) represents the largest ionic conductance of platelets and megakaryocytes, but is undefined at the molecular level. Quantitative RT-PCR of all known Kv alpha and ancillary subunits showed that only Kv1.3 (KCNA3) is substantially expressed in human platelets. Furthermore, megakaryocytes from Kv1.3(/) mice or from wild-type mice exposed to the Kv1.3 blocker margatoxin completely lacked Kv currents and displayed substantially depolarised resting membrane potentials. In human platelets, margatoxin reduced the P2X(1)- and thromboxaneA(2) receptor-evoked [Ca(2+)](i) increases and delayed the onset of store-operated Ca(2+) influx. Megakaryocyte development was normal in Kv1.3(/) mice, but the platelet count was increased, consistent with a role of Kv1.3 in apoptosis or decreased platelet activation. We conclude that Kv1.3 forms the Kv channel of the platelet and megakaryocyte, which sets the resting membrane potential, regulates agonist-evoked Ca(2+) increases and influences circulating platelet numbers.


Assuntos
Plaquetas/fisiologia , Sinalização do Cálcio/fisiologia , Canal de Potássio Kv1.3/sangue , Megacariócitos/fisiologia , Potenciais da Membrana/fisiologia , Contagem de Plaquetas , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Sinalização do Cálcio/efeitos dos fármacos , Tamanho Celular , DNA Complementar/biossíntese , DNA Complementar/genética , Humanos , Técnicas In Vitro , Megacariócitos/efeitos dos fármacos , Megacariócitos/ultraestrutura , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Venenos de Escorpião/farmacologia , Sistemas do Segundo Mensageiro/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA