Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(28): e2200342119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867745

RESUMO

Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.


Assuntos
Nadadeiras de Animais , Canal de Sódio Disparado por Voltagem NAV1.6 , Regeneração , Proteínas de Peixe-Zebra , Peixe-Zebra , Nadadeiras de Animais/inervação , Nadadeiras de Animais/fisiologia , Animais , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Regeneração/genética , Regeneração/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
2.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948337

RESUMO

Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein-protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Neurônios/metabolismo , Peptidomiméticos/farmacologia , Domínios Proteicos , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Ligação Proteica
3.
Mol Brain ; 14(1): 126, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399820

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies that are characterized by seizures and developmental delay. DEEs are primarily attributed to genetic causes and an increasing number of cases have been correlated with variants in ion channel genes. In this study, we report a child with an early severe DEE. Whole exome sequencing showed a de novo heterozygous variant (c.4873-4881 duplication) in the SCN8A gene and an inherited heterozygous variant (c.952G > A) in the CACNA1H gene encoding for Nav1.6 voltage-gated sodium and Cav3.2 voltage-gated calcium channels, respectively. In vitro functional analysis of human Nav1.6 and Cav3.2 channel variants revealed mild but significant alterations of their gating properties that were in general consistent with a gain- and loss-of-channel function, respectively. Although additional studies will be required to confirm the actual pathogenic involvement of SCN8A and CACNA1H, these findings add to the notion that rare ion channel variants may contribute to the etiology of DEEs.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Tônico-Clônica/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Anormalidades Múltiplas/genética , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , Feminino , Mutação com Ganho de Função , Duplicação Gênica , Predisposição Genética para Doença , Humanos , Recém-Nascido , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Linhagem , Mutação Puntual , Escoliose/genética
4.
Epilepsia ; 61(12): 2847-2856, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33140451

RESUMO

OBJECTIVE: SCN8A encephalopathy is a developmental epileptic encephalopathy typically caused by de novo gain-of-function mutations in Nav 1.6. Severely affected individuals exhibit refractory seizures, developmental delay, cognitive disabilities, movement disorders, and elevated risk of sudden death. Patients with the identical SCN8A variant can differ in clinical course, suggesting a role for modifier genes in determining disease severity. The identification of genetic modifiers contributes to understanding disease pathogenesis and suggesting therapeutic interventions. METHODS: We generated F1 and F2 crosses between inbred mouse strains and mice carrying the human pathogenic variants SCN8A-R1872W and SCN8A-N1768D. Quantitative trait locus (QTL) analysis of seizure-related phenotypes was used for chromosomal mapping of modifier loci. RESULTS: In an F2 cross between strain SJL/J and C57BL/6J mice carrying the patient mutation R1872W, we identified a major QTL on chromosome 5 containing the Gabra2 gene. Strain C57BL/6J carries a splice site mutation that reduces expression of Gabra2, encoding the α2 subunit of the aminobutyric acid type A receptor. The protective wild-type allele of Gabra2 from strain SJL/J delays the age at seizure onset and extends life span of the Scn8a mutant mice. Additional Scn8a modifiers were observed in the F2 cross and in an F1 cross with strain C3HeB/FeJ. SIGNIFICANCE: These studies demonstrate that the SJL/J strain carries multiple modifiers with protective effects against seizures induced by gain-of-function mutations in Scn8a. Homozygosity for the hypomorphic variant of Gabra2 in strain C57BL/6J is associated with early seizure onset and short life span. GABRA2 is a potential therapeutic target for SCN8A encephalopathy.


Assuntos
Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Receptores de GABA-A/fisiologia , Animais , Mapeamento Cromossômico , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Locos de Características Quantitativas/genética , Receptores de GABA-A/genética , Convulsões/genética
5.
J Neurophysiol ; 124(2): 510-524, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667253

RESUMO

Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


Assuntos
Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Sódio , Tetrodotoxina/farmacologia , Nervo Vestibular/fisiologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Gerbillinae , Células Ciliadas Vestibulares/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Nervo Vestibular/efeitos dos fármacos
6.
Neurosci Lett ; 724: 134853, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32114117

RESUMO

Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in neurons. The human genome includes ten human VGSC α-subunit genes, SCN(X)A, encoding Nav1.1-1.9 plus Nax. To understand the unique role that each VGSC plays in normal and pathophysiological function in neural networks, compounds with high affinity and selectivity for specific VGSC subtypes are required. Toward that goal, a structural analog of the VGSC pore blocker tetrodotoxin, 4,9-anhydrotetrodotoxin (4,9-ah-TTX), has been reported to be more selective in blocking Na+ current mediated by Nav1.6 than other TTX-sensitive VGSCs, including Nav1.2, Nav1.3, Nav1.4, and Nav1.7. While SCN1A, encoding Nav1.1, has been implicated in several neurological diseases, the effects of 4,9-ah-TTX on Nav1.1-mediated Na+ current have not been tested. Here, we compared the binding of 4,9-ah-TTX for human and mouse brain preparations, and the effects of 4,9-ah-TTX on human Nav1.1-, Nav1.3- and Nav1.6-mediated Na+ currents using the whole-cell patch clamp technique in heterologous cells. We show that, while 4,9-ah-TTX administration results in significant blockade of Nav1.6-mediated Na+ current in the nanomolar range, it also has significant effects on Nav1.1-mediated Na+ current. Thus, 4,9-ah-TTX is not a useful tool in identifying Nav1.6-specific effects in human brain networks.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Tetrodotoxina/análogos & derivados , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Especificidade da Espécie , Tetrodotoxina/farmacologia
7.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201232

RESUMO

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Axônios/metabolismo , Transtornos dos Movimentos/etiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Células de Purkinje/metabolismo , Tremor/etiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Potenciais de Ação , Animais , Dependovirus/genética , Eletroencefalografia , Eletromiografia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Genótipo , Movimentos da Cabeça , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Técnicas de Patch-Clamp , Transporte Proteico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Tremor/metabolismo , Tremor/fisiopatologia
8.
Brain Pathol ; 29(5): 675-692, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106489

RESUMO

Multiple Sclerosis is an autoimmune disorder causing neurodegeneration mostly in young adults. Thereby, myelin is lost in the inflammatory lesions leaving unmyelinated axons at a high risk to degenerate. Oligodendrocyte precursor cells maintain their regenerative capacity into adulthood and are able to remyelinate axons if they are properly activated and differentiate. Neuronal activity influences the success of myelination indicating a close interplay between neurons and oligodendroglia. The myelination profile determines the distribution of voltage-gated ion channels along the axon. Here, we analyze the distribution of the sodium channel subunit Nav1.6 and the ultrastructure of axons after cuprizone-induced demyelination in transgenic mice expressing GFP in oligodendroglial cells. Using this mouse model, we found an increased number of GFP-expressing oligodendroglial cells compared to untreated mice. Analyzing the axons, we found an increase in the number of nodes of Ranvier in mice that had received cuprizone. Furthermore, we found an enhanced portion of unmyelinated axons showing vesicles in the cytoplasm. These vesicles were labeled with VGlut1, indicating that they are involved in axonal signaling. Our results highlight the flexibility of axons towards changes in the glial compartment and depict the structural changes they undergo upon myelin removal. These findings might be considered if searching for new neuroprotective therapies that aim at blocking neuronal activity in order to avoid interfering with the process of remyelination.


Assuntos
Axônios/ultraestrutura , Bainha de Mielina/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Cuprizona/farmacologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Neurônios/patologia , Oligodendroglia/patologia , Nós Neurofibrosos , Remielinização/fisiologia , Canais de Sódio/metabolismo
9.
Hear Res ; 374: 1-4, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30669034

RESUMO

The Scn8amedJ mutation of the gene for sodium channels at the nodes of Ranvier slows nerve conduction, resulting in motor abnormalities. This mutation is also associated with loss of spontaneous bursting activity in the dorsal cochlear nucleus. However initial tests of auditory sensitivity in mice homozygous for this mutation, using standard 400-ms tones, demonstrated normal hearing sensitivity. Further testing, reported here, revealed a severely compromised sensitivity to short-duration tones of 10 and 2 ms durations. Such a deficit might be expected to interfere with auditory functions that depend on rapid processing of auditory signals.


Assuntos
Limiar Auditivo/fisiologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Estimulação Acústica , Animais , Audiometria de Tons Puros , Núcleo Coclear/fisiopatologia , Testes Auditivos , Homozigoto , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Condução Nervosa/genética , Condução Nervosa/fisiologia , Nós Neurofibrosos/fisiologia , Fatores de Tempo
10.
Sci Rep ; 8(1): 3845, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497094

RESUMO

Voltage-gated sodium channels NaV1.7, NaV1.8 and NaV1.9 have been the focus for pain studies because their mutations are associated with human pain disorders, but the role of NaV1.6 in pain is less understood. In this study, we selectively knocked out NaV1.6 in dorsal root ganglion (DRG) neurons, using NaV1.8-Cre directed or adeno-associated virus (AAV)-Cre mediated approaches, and examined the specific contribution of NaV1.6 to the tetrodotoxin-sensitive (TTX-S) current in these neurons and its role in neuropathic pain. We report here that NaV1.6 contributes up to 60% of the TTX-S current in large, and 34% in small DRG neurons. We also show NaV1.6 accumulates at nodes of Ranvier within the neuroma following spared nerve injury (SNI). Although NaV1.8-Cre driven NaV1.6 knockout does not alter acute, inflammatory or neuropathic pain behaviors, AAV-Cre mediated NaV1.6 knockout in adult mice partially attenuates SNI-induced mechanical allodynia. Additionally, AAV-Cre mediated NaV1.6 knockout, mostly in large DRG neurons, significantly attenuates excitability of these neurons after SNI and reduces NaV1.6 accumulation at nodes of Ranvier at the neuroma. Together, NaV1.6 in NaV1.8-positive neurons does not influence pain thresholds under normal or pathological conditions, but NaV1.6 in large NaV1.8-negative DRG neurons plays an important role in neuropathic pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neuralgia/genética , Animais , Feminino , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
11.
Neurotoxicology ; 60: 142-149, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27013268

RESUMO

The ability to reconstitute sodium channel function and pharmacology in vitro using cloned subunits of known structure has greatly enhanced our understanding of the action of pyrethroid insecticides at this target and the structural determinants of resistance and interspecies selectivity. However, the use of reconstituted channels raises three critical questions: (1) Which subunits and subunit combinations should be used? (2) Which heterologous expression system is preferred? (3) Which combination of subunits and expression system best represents the function of native neuronal channels in the organism of interest? This review considers these questions from the perspective of recent research in this laboratory on the action of pyrethroid insecticides on rat Nav1.6 sodium channels by comparing the effects of heteroligomeric complex composition on channel function and insecticide response when channels are expressed in either Xenopus oocytes or stably-transformed HEK293 cells. These comparisons provide new insight into the influence of cellular context on the functional and pharmacological properties of expressed channels, the modulatory effects of sodium channel auxiliary subunits on the action of pyrethroids, and the relative fidelity of the Xenopus oocyte and HEK293 cell expression systems as model systems for studying of channel function and pyrethroid action.


Assuntos
Técnicas In Vitro , Inseticidas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Piretrinas/farmacologia , Animais , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Ratos , Xenopus laevis
12.
Neurochem Res ; 42(2): 360-374, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743286

RESUMO

Temporal lobe epilepsy (TLE) is one of the most refractory types of adult epilepsy, and treatment options remain unsatisfactory. Gastrodin (GAS), a phenolic glucoside used in Chinese herbal medicine and derived from Gastrodia elata Blume, has been shown to have remarkable anticonvulsant effects on various models of epilepsy in vivo. However, the mechanisms of GAS as an anticonvulsant drug remain to be established. By utilizing a combination of behavioral surveys, immunofluorescence and electrophysiological recordings, the present study characterized the anticonvulsant effect of GAS in a pilocarpine-induced status epilepticus (SE) rat model of TLE and explored the underlying cellular mechanisms. We found that GAS pretreatment effectively reduced the severity of SE in the acute phase of TLE. Moreover, GAS protected medial entorhinal cortex (mEC) layer III neurons from neuronal death and terminated the SE-induced bursting discharge of mEC layer II neurons from SE-experienced rats. Furthermore, the current study revealed that GAS prevented the pilocarpine-induced enhancement of Nav1.6 currents (persistent (INaP) and resurgent (INaR) currents), which were reported to play a critical role in the generation of bursting spikes. Consistent with this result, GAS treatment reversed the expression of Nav1.6 protein in SE-experienced EC neurons. These results suggest that the inhibition of Nav1.6 sodium currents may be the underlying mechanism of GAS's anticonvulsant properties.


Assuntos
Álcoois Benzílicos/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Glucosídeos/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Pilocarpina/toxicidade , Bloqueadores dos Canais de Sódio/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Álcoois Benzílicos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia do Lobo Temporal/fisiopatologia , Glucosídeos/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Bloqueadores dos Canais de Sódio/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
13.
Neurotoxicology ; 60: 150-160, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28007400

RESUMO

BACKGROUND: Pyrethroid insecticides are the most popular class of insecticides in the world, despite their near-ubiquity, their effects of delaying the onset of inactivation of voltage-gated sodium (Nav) channels have not been well-evaluated in all the mammalian Nav isoforms. OBJECTIVE: Here we compare the well-studied Nav1.6 isoforms to the less-understood Nav1.1 in their responses to acute deltamethrin exposure. METHODS: We used patch-clamp electrophysiology to record sodium currents encoded by either Nav1.1 or Nav1.6 channels stably expressed in HEK293 cells. Protocols evaluating both resting and use-dependent modification were employed. RESULTS: We found that exposure of both isoforms to 10µM deltamethrin significantly potentiated persistent and tail current densities without affecting peak transient current densities, and only Nav1.1 maintained these significant effects at 1µM deltamethrin. Window currents increased for both as well, and while only Nav1.6 displayed changes in activation slope and V1/2 of steady-state inactivation for peak currents, V1/2 of persistent current activation was hyperpolarized of ∼10mV by deltamethrin in Nav1.1 cells. Evaluating use-dependence, we found that deltamethrin again potentiated persistent and tail current densities in both isoforms, but only Nav1.6 demonstrated use-dependent enhancement, indicating the primary deltamethrin-induced effects on Nav1.1 channels are not use-dependent. CONCLUSION: Collectively, these data provide evidence that Nav1.1 is indeed vulnerable to deltamethrin modification at lower concentrations than Nav1.6, and this effect is primarily mediated during the resting state. GENERAL SIGNIFICANCE: These findings identify Nav1.1 as a novel target of pyrethroid exposure, which has major implications for the etiology of neuropsychiatric disorders associated with loss of Nav1.1-expressing inhibitory neurons.


Assuntos
Inseticidas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Isoformas de Proteínas/fisiologia
14.
Neurobiol Dis ; 89: 36-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26807988

RESUMO

Mutations of the neuronal sodium channel gene SCN8A are associated with lethal movement disorders in the mouse and with human epileptic encephalopathy. We describe a spontaneous mouse mutation, Scn8a(9J), that is associated with a chronic movement disorder with early onset tremor and adult onset dystonia. Scn8a(9J) homozygotes have a shortened lifespan, with only 50% of mutants surviving beyond 6 months of age. The 3 bp in-frame deletion removes 1 of the 3 adjacent isoleucine residues in transmembrane segment DIVS6 of Nav1.6 (p.Ile1750del). The altered helical orientation of the transmembrane segment displaces pore-lining amino acids with important roles in channel activation and inactivation. The predicted impact on channel activity was confirmed by analysis of cerebellar Purkinje neurons from mutant mice, which lack spontaneous and induced repetitive firing. In a heterologous expression system, the activity of the mutant channel was below the threshold for detection. Observations of decreased nerve conduction velocity and impaired behavior in an open field are also consistent with reduced activity of Nav1.6. The Nav1.6Δ1750 protein is only partially glycosylated. The abundance of mutant Nav1.6 is reduced at nodes of Ranvier and is not detectable at the axon initial segment. Despite a severe reduction in channel activity, the lifespan and motor function of Scn8a(9J/9J) mice are significantly better than null mutants lacking channel protein. The clinical phenotype of this severe hypomorphic mutant expands the spectrum of Scn8a disease to include a recessively inherited, chronic and progressive movement disorder.


Assuntos
Aminoácidos/genética , Transtornos dos Movimentos/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Deleção de Sequência , Potenciais de Ação , Animais , Segmento Inicial do Axônio/metabolismo , Comportamento Animal , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Distonia/complicações , Distonia/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/veterinária , Força Muscular , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Condução Nervosa , Junção Neuromuscular/patologia , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Nós Neurofibrosos/metabolismo , Análise de Sobrevida , Tremor/complicações , Tremor/genética
15.
J Neurophysiol ; 113(7): 2618-34, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652923

RESUMO

Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (µ-conotoxin GIIIa and µ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron.


Assuntos
Colo/fisiologia , Gânglios Espinais/fisiologia , Mecanorreceptores/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Reto/fisiologia , Potenciais de Ação , Animais , Colo/inervação , Colo/metabolismo , Gânglios Espinais/metabolismo , Masculino , Mecanorreceptores/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Estimulação Física , Reto/inervação , Reto/metabolismo
16.
J Neurophysiol ; 110(5): 1144-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23741036

RESUMO

During epileptogenesis a series of molecular and cellular events occur, culminating in an increase in neuronal excitability, leading to seizure initiation. The entorhinal cortex has been implicated in the generation of epileptic seizures in both humans and animal models of temporal lobe epilepsy. This hyperexcitability is due, in part, to proexcitatory changes in ion channel activity. Sodium channels play an important role in controlling neuronal excitability, and alterations in their activity could facilitate seizure initiation. We sought to investigate whether medial entorhinal cortex (mEC) layer II neurons become hyperexcitable and display proexcitatory behavior of Na channels during epileptogenesis. Experiments were conducted 7 days after electrical induction of status epilepticus (SE), a time point during the latent period of epileptogenesis and before the onset of seizures. mEC layer II stellate neurons from post-SE animals were hyperexcitable, eliciting action potentials at higher frequencies compared with control neurons. Na channel currents recorded from post-SE neurons revealed increases in Na current amplitudes, particularly persistent and resurgent currents, as well as depolarized shifts in inactivation parameters. Immunocytochemical studies revealed increases in voltage-gated Na (Nav) 1.6 isoform levels. The toxin 4,9-anhydro-tetrodotoxin, which has greater selectivity for Nav1.6 over other Na channel isoforms, suppressed neuronal hyperexcitability, reduced macroscopic Na currents, persistent and resurgent Na current densities, and abolished depolarized shifts in inactivation parameters in post-SE neurons. These studies support a potential role for Nav1.6 in facilitating the hyperexcitability of mEC layer II neurons during epileptogenesis.


Assuntos
Córtex Entorrinal/fisiopatologia , Epilepsia/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Neurônios/fisiologia , Animais , Técnicas In Vitro , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/análogos & derivados , Tetrodotoxina/farmacologia , Fatores de Tempo
17.
J Neurosci ; 33(23): 9644-54, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739961

RESUMO

The ability to regulate intrinsic membrane excitability, to maintain consistency of action potential firing, is critical for stable neural circuit activity. Without such mechanisms, Hebbian-based synaptic plasticity could push circuits toward activity saturation or, alternatively, quiescence. Although now well documented, the underlying molecular components of these homeostatic mechanisms remain poorly understood. Recent work in the fruit fly, Drosophila melanogaster, has identified Pumilio (Pum), a translational repressor, as an essential component of one such mechanism. In response to changing synaptic excitation, Pum regulates the translation of the voltage-gated sodium conductance, leading to a concomitant adjustment in action potential firing. Although similar homeostatic mechanisms are operational in mammalian neurons, it is unknown whether Pum is similarly involved. In this study, we report that Pum2 is indeed central to the homeostatic mechanism regulating membrane excitability in rat visual cortical pyramidal neurons. Using RNA interference, we observed that loss of Pum2 leads to increased sodium current (I(Na)) and action potential firing, mimicking the response by these neurons to being deprived of synaptic depolarization. In contrast, increased synaptic depolarization results in increased Pum2 expression and subsequent reduction in INa and membrane excitability. We further show that Pum2 is able to directly bind the predominant voltage-gated sodium channel transcript (NaV1.6) expressed in these neurons and, through doing so, regulates translation of this key determinant of membrane excitability. Together, our results show that Pum2 forms part of a homeostatic mechanism that matches membrane excitability to synaptic depolarization in mammalian neurons.


Assuntos
Potenciais de Ação/fisiologia , Membrana Celular/fisiologia , Homeostase/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Ligação Proteica/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Córtex Visual/fisiologia
18.
J Physiol ; 591(1): 241-55, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23090952

RESUMO

Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Proteínas de Ligação a RNA/fisiologia , Convulsões/fisiopatologia , Animais , Encéfalo/fisiologia , Proteínas CELF , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Tamoxifeno/farmacologia
19.
Pflugers Arch ; 464(5): 493-502, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22986623

RESUMO

Patch-clamp experiments were performed to investigate the molecular properties of resurgent-like currents in single smooth muscle cells dispersed from mouse vas deferens, utilizing both Na(V)1.6-null mice (Na(V)1.6(-/-)), lacking the expression of the Scn8a Na(+) channel gene, and their wild-type littermates (Na(V)1.6(+/+)). Na(V)1.6 immunoreactivity was clearly visible in dispersed smooth muscle cells obtained from Na(V)1.6(+/+), but not Na(V)1.6(-/-), vas deferens. Following a depolarization to +30 mV from a holding potential of -70 mV (to produce maximal inactivation of the Na(+) current), repolarization to voltages between -60 and +20 mV elicited a tetrodotoxin (TTX)-sensitive inward current in Na(V)1.6(+/+), but not Na(V)1.6(-/-), vas deferens myocytes. The resurgent-like current in Na(V)1.6(+/+) vas deferens myocytes peaked at approximately -20 mV in the current-voltage relationship. The peak amplitude of the resurgent-like current remained at a constant level when the membrane potential was repolarized to -20 mV following the application of depolarizing rectangular pulses to more positive potentials than +20 mV. 4,9-Anhydrotetrodotoxin (4,9-anhydroTTX), a selective Na(V)1.6 blocking toxin, purified from a crude mixture of TTX analogues by LC-FLD techniques, reversibly suppressed the resurgent-like currents. ß-Pompilidotoxin, a voltage-gated Na(+) channel activator, evoked sustained resurgent-like currents in Na(V)1.6(+/+) but not Na(V)1.6(-/-) murine vas deferens myocytes. These results strongly indicate that, primarily, resurgent-like currents are generated as a result of Na(V)1.6 channel activity.


Assuntos
Potenciais de Ação , Miócitos de Músculo Liso/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Potenciais de Ação/genética , Animais , Proteínas de Insetos/farmacologia , Masculino , Camundongos , Camundongos Mutantes , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Tetrodotoxina/farmacologia , Ducto Deferente/citologia , Agonistas do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Venenos de Vespas/farmacologia
20.
Sheng Li Xue Bao ; 63(1): 1-8, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21340428

RESUMO

A new method of axon recording through axon bleb has boosted the studies on the functional role of central nervous system (CNS) axons. Using this method, we have revealed the mechanisms underlying the initiation and propagation of the digital-mode signal, all-or-none action potentials (APs), in neocortical pyramidal neurons. Accumulation of the low-threshold Na(+) channel subtype Na(v)1.6 at the distal end of the axon initial segment (AIS) determines the lowest threshold for AP initiation, whereas accumulation of the high-threshold subtype Na(v)1.2 at the proximal region of the AIS promotes AP backpropagation to the soma and dendrites. Through dual recording from the soma and the axon, we have showed that subthreshold membrane potential (V(m)) fluctuations in the soma propagate along the axon to a long distance and probably reach the axon terminals. Paired recording from cortical neurons has revealed that these V(m) changes in the soma modulate AP-triggered synaptic transmission. This new V(m)-dependent mode of synaptic transmission is called analog communication. Unique properties of axonal K(+) channels (K(v)1 channels) may contribute to shaping the AP waveform, particularly its duration, and thus controlling synaptic strength at different levels of presynaptic V(m). The level of background Ca(2+) may also participate in mediating the analog signaling. Together, these findings enrich our knowledge on the principles of neuronal signaling in the CNS and help understand how the brain works.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Sistema Nervoso Central/fisiologia , Células Piramidais/fisiologia , Animais , Sistema Nervoso Central/citologia , Humanos , Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Técnicas de Patch-Clamp , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...