Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 21(10): 1011-1026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32933457

RESUMO

Aminoglycosides and ß-lactams are the most commonly used antimicrobial agents in clinical practice. This occurs because they are capable of acting in the treatment of acute bacterial infections. However, the effectiveness of antibiotics has been constantly threatened due to bacterial pathogens producing resistance enzymes. Among them, the aminoglycoside-modifying enzymes (AMEs) and ß-lactamase enzymes are the most frequently reported resistance mechanisms. AMEs can inactivate aminoglycosides by adding specific chemical molecules in the compound, whereas ß-lactamases hydrolyze the ß-lactams ring, preventing drug-target interaction. Thus, these enzymes provide a scenario of multidrug-resistance and a significant threat to public health at a global level. In response to this challenge, in recent decades, several studies have focused on the development of inhibitors that can restore aminoglycosides and ß-lactams activity. In this context, peptides appear as a promising approach in the field of inhibitors for future antibacterial therapies, as multiresistant bacteria may be susceptible to these molecules. Therefore, this review focused on the most recent findings related to peptide-based inhibitors that act on AMEs and ß-lactamases, and how these molecules could be used for future treatment strategies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Ácido Clavulânico/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sulbactam/uso terapêutico , Tazobactam/uso terapêutico , Aminoglicosídeos/metabolismo , Aminoglicosídeos/uso terapêutico , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Desenho de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Canamicina Quinase/antagonistas & inibidores , Canamicina Quinase/química , Canamicina Quinase/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/uso terapêutico
2.
Braz J Microbiol ; 50(4): 887-898, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401782

RESUMO

Bacterial resistance towards aminoglycoside antibiotics mainly occurs because of aminoglycoside phosphotransferases (APHs). It is thus necessary to provide a rationale for focusing inhibitor development against APHs. The nucleotide triphosphate (NTP) binding site of eukaryotic protein kinases (ePKs) is structurally conserved with APHs. However, ePK inhibitors cannot be used against APHs due to cross reactivity. Thus, understanding bacterial resistance at the atomic level could be useful to design new inhibitors against such resistant pathogens. Hence, we carried out in vitro studies of APH from newly deposited multidrug-resistant organism Bacillus subtilis subsp. subtilis strain RK. Enzymatic modification studies of different aminoglycoside antibiotics along with purification and characterization revealed a novel class of APH, i.e., APH(5), with molecular weight 27 kDa approximately. Biochemical analysis of virtually screened inhibitor ZINC71575479 by coupled spectrophotometric assay showed complete enzymatic inhibition of purified APH(5). In silico toxicity study comparison of ZINC71575479 with known inhibitor of APH, i.e., tyrphostin AG1478, predicted its acceptable values for 96 h fathead minnow LC50, 48 h Tetrahymena pyriformis IGC50, oral rat LD50, and developmental toxicity using different QSAR methodologies. Thus, the present study gives novel insight into the aminoglycoside resistance and inhibition mechanism of APH(5) by applying experimental and computational techniques synergistically.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Canamicina Quinase/metabolismo , Aminoglicosídeos/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Canamicina Quinase/antagonistas & inibidores , Canamicina Quinase/química , Canamicina Quinase/genética , Filogenia , Ratos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA