Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mycoses ; 67(6): e13752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38880933

RESUMO

BACKGROUND: Candida auris is an emerging multidrug-resistant yeast, frequently causing outbreaks in health care facilities. The pathogen persistently colonises human skin and inanimate surfaces such as catheters, aiding to its spread. Moreover, colonisation is a risk factor to develop invasive infection. OBJECTIVES: We investigated 61 C. auris strains isolated from non-sterile human body sites (n = 53) and the hospital environment (n = 8), originating from four different centres in a single Brazilian state. MATERIALS AND METHODS: Antifungal susceptibility testing (AFST) against common antifungals was performed, and resistance-associated genes were evaluated. Genetic relatedness was investigated with short tandem repeat (STR) genotyping and validated with whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. RESULTS: Antifungal susceptibility testing demonstrated that all isolates were susceptible to azoles, echinocandins and amphotericin B. No mutations were detected in ERG11 and FKS1 genes. With STR typing, isolates were allocated to clade IV and appeared closely related. This was confirmed by WGS SNP analysis of 6 isolates, which demonstrated a maximal difference of only 41 SNPs between these strains. Furthermore, the Brazilian isolates formed a distinct autochthonous branch within clade IV, excluding recent introductions from outside the country. A molecular clock analysis of clade IV isolates from various countries suggests that early in the previous century there was a unique event causing environmental spread of a C. auris ancestor throughout the Latin-American continent, followed by human introduction during the last decades. CONCLUSION: We report the emergence of C. auris patient colonisation in multiple centres by fluconazole-susceptible clade IV close-related strains in Pernambuco State, Brazil.


Assuntos
Antifúngicos , Azóis , Candida auris , Candidíase , Surtos de Doenças , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Humanos , Brasil/epidemiologia , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/epidemiologia , Azóis/farmacologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Sequenciamento Completo do Genoma , Genótipo , Feminino , Masculino , Farmacorresistência Fúngica/genética , Adulto , Pessoa de Meia-Idade , Candidíase Invasiva
2.
Braz J Microbiol ; 55(3): 2593-2601, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38743245

RESUMO

Candida spp. can be found in the human microbiome. However, immunocompromised patients are likely to develop invasive Candida infections, with mortality rates higher than 50%. The discovery of C. auris, a species that rapidly acquire antifungal resistance, increased the concern about Candida infections. The limited number of antifungal agents and the high incidence of resistance to them make imperative the development of new antifungal drugs. ß-lapachone is a biological active naphthoquinone that displays antifungal activity against C. albicans and C. glabrata. The aim of this study was to evaluate if this substance affects C. auris growth and elucidate its mechanism of action. A fluconazole-resistant C. auris isolate was used in this study. The antifungal activity of ß-lapachone was determined through microbroth dilution assays, and its mechanism of action was evaluated using fluorescent probes. Interaction with fluconazole and amphotericin B was assessed by disk diffusion assay and checkerboard. ß-lapachone inhibited planktonic C. auris cell growth by 92.7%, biofilm formation by 84.9%, and decrease the metabolism of preformed biofilms by 87.1% at 100 µg/ml. At 100 µg/ml, reductions of 30% and 59% of Calcofluor White and Nile red fluorescences were observed, indicating that ß-lapachone affects cell wall chitin and neutral lipids content, respectively. Also, the ratio 590 nm/529 nm of JC-1 decreased 52%, showing that the compound affects mitochondria. No synergism was observed between ß-lapachone and fluconazole or amphotericin B. Data show that ß-lapachone may be a promising candidate to be used as monotherapy to treat C. auris resistant infections.


Assuntos
Antifúngicos , Biofilmes , Candida auris , Farmacorresistência Fúngica , Fluconazol , Testes de Sensibilidade Microbiana , Naftoquinonas , Naftoquinonas/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Biofilmes/efeitos dos fármacos , Humanos , Candida auris/efeitos dos fármacos , Candida auris/genética , Anfotericina B/farmacologia , Candidíase/microbiologia , Candidíase/tratamento farmacológico
3.
Microbiol Spectr ; 9(3): e0153821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908466

RESUMO

Emerging and reemerging pathogens are a worldwide concern, and it is predicted that these microbes will cause severe outbreaks. Candida auris affects people with weakened immune systems, particularly those who are hospitalized or are in health care facilities. Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all domains of life. EVs can deliver functional molecules to target cells, including proteins and nucleic acids, especially RNA molecules. EVs from several pathogenic fungi species play diverse biological roles related to cell-cell communication and pathogen-host interaction. In this study, we describe a data set which we produced by sequencing the RNA content of EVs from C. auris under normal growth conditions and in the presence of the antifungal caspofungin, a first-line drug to treat this fungus. To generate a more complete data set for future comparative studies, we also sequenced the RNA cellular content of EVs under the same conditions. This data set addresses a previously unexplored area of fungal biology regarding cellular small RNA and EV RNA. Our data will provide a molecular basis for the study of the aspects associated with antifungal treatment, gene expression response, and EV composition in C. auris. These data will also allow the exploration of small RNA content in the fungal kingdom and might serve as an informative basis for studies on the mechanisms by which molecules are directed to fungal EVs. IMPORTANCE Candida auris, a relevant emerging human-pathogenic yeast, is the first fungus to be called a global public health threat by the WHO. This is because of its rapid spread on all inhabited continents, together with its extremely high frequency of drug and multidrug resistance. In our study, we generated a large data set for 3 distinct strains of C. auris and obtained cellular small RNA fraction as well as extracellular vesicle RNA (EV-RNA) during normal growth conditions and after treatment with caspofungin, the first-line drug used to treat C. auris infection.


Assuntos
Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/metabolismo , Vesículas Extracelulares/metabolismo , RNA/metabolismo , Candida auris/genética , Candidíase Invasiva/tratamento farmacológico , Testes Diagnósticos de Rotina , Fungos/genética , Técnicas Genéticas , Interações Hospedeiro-Patógeno , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA