Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Water Res ; 254: 121397, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461599

RESUMO

Municipal wastewater treatment plants (WWTPs) play a crucial role in the collection and redistribution of plastic particles from both households and industries, contributing to their presence in the environment. Previous studies investigating the levels of plastics in WWTPs, and their removal rates have primarily focused on polymer type, size, shape, colour, and particle count, while comprehensive understanding of the mass concentration of plastic particles, particularly those <1 µm (nanoplastics), remains unclear and lacking. In this study, pyrolysis gas chromatography-mass spectrometry was used to simultaneously determine the mass concentration of nine selected polymers (i.e., polyethylene (PE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), nylon 6, nylon 66, polyvinylchloride (PVC), poly(methyl methacrylate) (PMMA) and polycarbonate (PC)) below 1 µm in size across the treatment processes or stages of three WWTPs in Australia. All the targeted nanoplastics were detected at concentrations between 0.04 and 7.3 µg/L. Nylon 66 (0.2-7.3 µg/L), PE (0.1-6.6 µg/L), PP (0.1-4.5 µg/L), Nylon 6 (0.1-3.6 µg/L) and PET (0.1-2.2 µg/L), were the predominant polymers in the samples. The mass concentration of the total nanoplastics decreased from 27.7, 18 and 9.1 µg/L in the influent to 1, 1.4 and 0.8 µg/L in the effluent, with approximate removal rates of 96 %, 92 % and 91 % in plants A, B and C, respectively. Based on annual wastewater effluent discharge, it is estimated that approximately 24, 2 and 0.7 kg of nanoplastics are released into the environment per year for WWTPs A, B and C, respectively. This study investigated the mass concentrations and removal rates of nanoplastics with a size range of 0.01-1 µm in wastewater, providing important insight into the pollution levels and distribution patterns of nanoplastics in Australian WWTPs.


Assuntos
Caprolactama/análogos & derivados , Polímeros , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Microplásticos , Nylons , Pirólise , Cromatografia Gasosa-Espectrometria de Massas , Austrália , Plásticos/análise , Polipropilenos/análise , Polimetil Metacrilato , Polietilenos , Poluentes Químicos da Água/química , Monitoramento Ambiental
2.
Nat Commun ; 15(1): 1217, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336849

RESUMO

Successes in biocatalytic polyester recycling have raised the possibility of deconstructing alternative polymers enzymatically, with polyamide (PA) being a logical target due to the array of amide-cleaving enzymes present in nature. Here, we screen 40 potential natural and engineered nylon-hydrolyzing enzymes (nylonases), using mass spectrometry to quantify eight compounds resulting from enzymatic nylon-6 (PA6) hydrolysis. Comparative time-course reactions incubated at 40-70 °C showcase enzyme-dependent variations in product distributions and extent of PA6 film depolymerization, with significant nylon deconstruction activity appearing rare. The most active nylonase, a NylCK variant we rationally thermostabilized (an N-terminal nucleophile (Ntn) hydrolase, NylCK-TS, Tm = 87.4 °C, 16.4 °C higher than the wild-type), hydrolyzes 0.67 wt% of a PA6 film. Reactions fail to restart after fresh enzyme addition, indicating that substrate-based limitations, such as restricted enzyme access to hydrolysable bonds, prohibit more extensive deconstruction. Overall, this study expands our understanding of nylonase activity distribution, indicates that Ntn hydrolases may have the greatest potential for further development, and identifies key targets for progressing PA6 enzymatic depolymerization, including improving enzyme activity, product selectivity, and enhancing polymer accessibility.


Assuntos
Caprolactama/análogos & derivados , Nylons , Polímeros , Hidrólise , Polímeros/química , Poliésteres
3.
Food Chem ; 445: 138740, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359569

RESUMO

Microplastics released from plastic-based filter bags during tea brewing have attracted widespread attention. Laser confocal micro-Raman and direct classical least squares were used to identify and estimate micron-sized microplastics. Characteristic peaks from pyrolysis-gas chromatography/mass spectrometry of polyethylene terephthalate, polypropylene, and nylon 6 were selected to construct curves for quantification submicron-sized microplastics. The results showed that microplastics released from tea bags in the tea infusions ranged from 80 to 1288 pieces (micron-sized) and 0 to 63.755 µg (submicron-sized) per filter bag. Nylon 6 woven tea bags released far fewer microplastics than nonwoven filter bags. In particular, a simple strategy of three pre-washes with room temperature water significantly reduced microplastic residues with removal rates of 76 %-94 % (micron-sized) and 80 %-87 % (submicron-sized), respectively. The developed assay can be used for the quantitative evaluation of microplastics in tea infusions, and the pre-washing reduced the risk of human exposure to microplastics during tea consumption.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Polímeros , Chá , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35370, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247254

RESUMO

Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.


Assuntos
Caprolactama/análogos & derivados , Quitosana , Nanofibras , Humanos , Quitosana/farmacologia , Ácido Hialurônico/farmacologia , Estudos Prospectivos , Bandagens , Antibacterianos/farmacologia , Escherichia coli , Polímeros
5.
J Hazard Mater ; 465: 133435, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224639

RESUMO

Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.


Assuntos
Brucella , Caprolactama/análogos & derivados , Microplásticos , Polímeros , Plásticos , Esgotos/microbiologia , Floculação
6.
Biomater Sci ; 12(2): 335-345, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014921

RESUMO

Oral protein delivery holds significant promise as an effective therapeutic strategy for treating a wide range of diseases. However, effective absorption of proteins faces challenges due to biological barriers such as harsh conditions of the stomach and the low permeability of mucous membranes. To address these challenges, this article presents a novel nano-in-nano platform designed for enteric protein delivery. This platform, obtained by electrospinning, involves a coaxial arrangement comprising poly(N-vinylcaprolactam) nanogels (NGs) enclosed within nanofibers of Eudragit® L100-55 (EU), a pH-responsive polymer. The pH-selective solubility of EU ensures the protection of NGs during their passage through the stomach, where the fibers remain intact at low pH, and releases them in the intestine where EU dissolves. The switchable characteristic of this nano-in-nano platform is confirmed by using NGs loaded with a model protein (ovalbumin), which is selectively released when the intestinal pH is achieved. The versatility of this nano-in-nano delivery platform is demonstrated by the ability to modify the fibers dissolution profile simply by adjusting the concentration of EU used in the electrospinning process. Furthermore, by tuning the properties of NGs, the potential applications of this platform can be further extended, paving the way for diverse therapeutic possibilities.


Assuntos
Caprolactama/análogos & derivados , Sistemas de Liberação de Fármacos por Nanopartículas , Polímeros , Ácidos Polimetacrílicos , Nanogéis , Ácidos Polimetacrílicos/química , Concentração de Íons de Hidrogênio
7.
Am J Respir Crit Care Med ; 209(4): 427-443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971785

RESUMO

Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 µm nylon 6,6 (nylon) and 15 × 52 µm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Plásticos , Polímeros , Camundongos , Humanos , Animais , Nylons , Têxteis , Poliésteres
8.
Chem Soc Rev ; 51(19): 8258-8275, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047318

RESUMO

Ring opening polymerization (ROP) of lactams is a highly efficient and versatile method to synthesize polyamides. Within the last ten years, significant advances in polymerization methodology and monomer diversity are ushering in a new era of polyamide chemistry. We begin with a discussion of polymerization techniques including the most widely used anionic ring opening polymerization (AROP), and less prevalent cationic ROP and enzyme-catalyzed ROP. Next, we describe new monomers being explored for ROP with increased functionality and stereochemistry. We emphasize the relationships between composition, structure, and properties, and how chemists can control composition and structure to dictate a desired property or performance. Finally, we discuss biomedical applications of the synthesized polyamides, specifically as biomaterials and pharmaceuticals, with examples to include as antimicrobial agents, cell adhesion substrates, and drug delivery scaffolds.


Assuntos
Anti-Infecciosos , Nylons , Materiais Biocompatíveis , Caprolactama/análogos & derivados , Lactamas/química , Nylons/química , Preparações Farmacêuticas , Polimerização , Polímeros
9.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012282

RESUMO

Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength, thermogravimetry, current-voltage measurements, shielding against electromagnetic interference, and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to 5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22 × 10-6 S/cm and 6.61 × 10-5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of -10.5 dB at 9 GHz and a value around -8.2 dB between 11 and 12 GHz. This was possibly due to the higher electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites, regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal the possibility for tailoring the properties of insulating materials for application in electrical and electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen the application range.


Assuntos
Acrilonitrila , Nanocompostos , Nanotubos de Carbono , Butadienos , Caprolactama/análogos & derivados , Condutividade Elétrica , Polímeros , Estireno
10.
ACS Appl Bio Mater ; 5(7): 3509-3518, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35793521

RESUMO

Medical protective materials have broadly drawn attention due to their ability to stop the spread of infectious diseases and protect the safety of medical staff. However, creating medical protective materials that combine excellent liquid shielding performance and outstanding mechanical properties with high breathability is still a challenging task. Herein, a polyester/polyamide 6 (PET/PA6) bicomponent microfilament fabric with tunable porosity for comfortable medical protective clothing was prepared via dip-coating technology and an easy and effective thermal-belt bonding process. The dip coating of the C6-based fluorocarbon polymer endowed the samples with excellent hydrophobicity (alcohol contact angles, 130-128°); meanwhile, by adjusting the temperature and pressure of the thermal-belt bonding process, the porosity of the samples was adapted in the range of 64.19-88.64%. Furthermore, benefitting tunable porosity and surface hydrophobicity, the samples also demonstrated an excellent softness score (24.3-34.5), agreeable air permeability (46.3-27.8 mm/s), and high hydrostatic pressure (1176-4130 Pa). Significantly, the created textiles successfully filter aerosol from the air and display highly tensile strength. These excellent comprehensive performances indicate that the prepared PET/PA6 bicomponent microfilament fabrics would be an attractive choice for medical protective apparel.


Assuntos
Poliésteres , Têxteis , Citoesqueleto de Actina , Caprolactama/análogos & derivados , Humanos , Polímeros , Porosidade , Tomografia por Emissão de Pósitrons , Roupa de Proteção
11.
Acta Chim Slov ; 69(2): 251-260, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35861067

RESUMO

Soft nanoparticles are an important class of material with potential to be used as carriers of active compounds. Swollen, penetrable particles can act as a host for the active ingredients and provide stability, stimuli-responsiveness and recyclability for the guest. Thermoresponsive colloidal gel particles are especially attractive for such applications due to the extremely soft structure, size and responsiveness. Poly(N-vinylcaprolactam) (PNVCL) is a much studied, popular thermoresponsive polymer. The polymer has low toxicity and the phase transition temperature is close to body temperature. During the phase transition, the polymer becomes less soluble, the particle expels a large part of water and the particle collapses to a more compact form. The diffusion of material in and from the particles is largely affected by this transition.  As the solubility of the polymer changes, so do the interactions with the loaded compound.  This feature article focuses on the synthetic methods, properties and applications of soft PNVCL particles.


Assuntos
Caprolactama , Caprolactama/análogos & derivados , Caprolactama/química , Polímeros/química , Temperatura , Água/química
12.
ChemSusChem ; 15(16): e202200811, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35671069

RESUMO

6-Aminocaproic acid (6ACA) is a key building block and an attractive precursor of caprolactam, which is used to synthesize nylon 6, one of the most common polymers manufactured nowadays. (Bio)-production of platform chemicals from renewable feedstocks is instrumental to tackle climate change and decrease fossil fuel dependence. Here, the cell-free biosynthesis of 6ACA from 6-hydroxycaproic acid was achieved using a co-immobilized multienzyme system based on horse liver alcohol dehydrogenase, Halomonas elongata transaminase, and Lactobacillus pentosus NADH oxidase for in-situ cofactor recycling, with >90 % molar conversion (m.c.) The integration of a step to synthesize hydroxy-acid from lactone by immobilized Candida antarctica lipase B resulted in >80 % m.c. of ϵ-caprolactone to 6ACA, >20 % of δ-valerolactone to 5-aminovaleric acid, and 30 % of γ-butyrolactone to γ-aminobutyric acid in one-pot batch reactions. Two serial packed-bed reactors were set up using these biocatalysts and applied to the continuous-flow synthesis of 6ACA from ϵ-caprolactone, achieving a space-time yield of up to 3.31 g6ACA h-1 L-1 with a segmented liquid/air flow for constant oxygen supply.


Assuntos
Caprolactama , Animais , Biocatálise , Caproatos , Caprolactama/análogos & derivados , Enzimas Imobilizadas/metabolismo , Cavalos , Lactonas , Polímeros
13.
Molecules ; 27(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684423

RESUMO

Limited tissue selectivity and targeting of anticancer therapeutics in systemic administration can produce harmful side effects in the body. Various polymer nano-vehicles have been developed to encapsulate therapeutics and prevent premature drug release. Dually responsive polymeric vesicles (polymersomes) assembled from temperature-/pH-sensitive block copolymers are particularly interesting for the delivery of encapsulated therapeutics to targeted tumors and inflamed tissues. We have previously demonstrated that temperature-responsive poly(N-vinylcaprolactam) (PVCL)-b-poly(dimethylsiloxane) (PDMS)-b-PVCL polymersomes exhibit high loading efficiency of anticancer therapeutics in physiological conditions. However, the in-vivo toxicity of these polymersomes as biocompatible materials has not yet been explored. Nevertheless, developing an advanced therapeutic nanocarrier must provide the knowledge of possible risks from the material's toxicity to support its future clinical research in humans. Herein, we studied pH-induced degradation of PVCL10-b-PDMS65-b-PVCL10 vesicles in-situ and their dually (pH- and temperature-) responsive release of the anticancer drug, doxorubicin, using NMR, DLS, TEM, and absorbance spectroscopy. The toxic potential of the polymersomes was evaluated in-vivo by intravenous injection (40 mg kg-1 single dose) of PVCL10-PDMS65-PVCL10 vesicles to mice. The sub-acute toxicity study (14 days) included gravimetric, histological, and hematological analyses and provided evidence for good biocompatibility and non-toxicity of the biomaterial. These results show the potential of these vesicles to be used in clinical research.


Assuntos
Portadores de Fármacos , Polímeros , Animais , Materiais Biocompatíveis , Caprolactama/análogos & derivados , Dimetilpolisiloxanos , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Camundongos , Polímeros/química
14.
ACS Macro Lett ; 11(1): 46-52, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574805

RESUMO

Functional polymers of nylon-6, particularly those with sustained antibacterial functions, have many practical applications. However, the development of functional ε-caprolactam monomers for the subsequent ring-opening copolymerization (ROCOP) formation of these materials remains a challenge. Here we report a t-BuP4-mediated ROCOP of dimethyl-protected cyclic lysine with ε-caprolactam, followed by quaternization, affording antibacterial nylon-6 polymers bearing quaternary ammonium functionality with high molecular weight (up to 77.4 kDa). The antibacterial nylon-6 polymers exhibited good physical and mechanical properties and strong antimicrobial activities. At 25 mol % quaternary ammonium group incorporation, the nylon-6 polymer demonstrated complete killing of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The results from this study may provide a strategy for the facile preparation of antibacterial nylon-6 polymers to addressing the public health and safety challenges.


Assuntos
Compostos de Amônio , Caprolactama , Antibacterianos/farmacologia , Caprolactama/análogos & derivados , Caprolactama/farmacologia , Escherichia coli , Lisina/farmacologia , Polímeros/farmacologia
15.
Environ Sci Pollut Res Int ; 29(49): 74051-74061, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35633450

RESUMO

Adsorption of test substances on micromembrane filters during sample pretreatment before qualitative and quantitative analysis has greatly affected the accuracy of the measurement. In the present study, it was found that the adsorption rate of pyraclostrobin reached 77.7-100% when water samples of pyraclostrobin (1 mL) were filtered with polyethersulfone (PES) and Nylon 6 filters. Therefore, the adsorption mechanisms were investigated from the kinetics, isotherms, and thermodynamics of the pyraclostrobin adsorption process, combined with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that PES accorded with second-order adsorption kinetics and Nylon 6 with first-order adsorption kinetics, and the correlation coefficient R2 was 0.98. The adsorption behavior of the two micromembranes followed the linear isothermal model, indicating that the adsorption process was through monolayer adsorption. Thermodynamic study showed that the adsorption of pyracoethyl on PES membrane was spontaneous endothermic, while that on Nylon 6 was spontaneous exothermic. The π-π electron-donor-acceptor (EDA) between pyraclostrobin and PES may promote the adsorption of PES to pyraclostrobin, and hydrogen bonding between pyraclostrobin and Nylon 6 micromembrane may be involved in the adsorption. Our study also proved that the adding 60% methanol and iodine solution (2 mmol/L) was an effective strategy to reduce the adsorption effects and to increase the accuracy of the detection.


Assuntos
Iodo , Poluentes Químicos da Água , Adsorção , Caprolactama/análogos & derivados , Concentração de Íons de Hidrogênio , Cinética , Metanol , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Estrobilurinas , Sulfonas , Termodinâmica , Água , Poluentes Químicos da Água/química
16.
Langmuir ; 38(15): 4774-4784, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380846

RESUMO

Water-soluble amphiphilic polymers are vital chemicals in the oil and gas industry to retard crystal growth of hydrocarbon hydrate via surface adsorption and suppress nucleation of a pristine hydrate nucleus, thereby preventing formation of hydrate blockages in flow lines during oil and natural gas production. Apart from a few theoretical modeling studies, an experimental method to study the polymer/water interface in the crystal growth is critically needed. Here, water motions in the hydration shells of an exemplary kinetic inhibitor, poly(N-vinylcaprolactam), during hydrate formation from the tetrahydrofuran/water system are revealed via nuclear magnetic resonance relaxometry. Unequivocal experiments show that the pivotal interfacial water in the tightly bound state gradually freezes at rates depending on the polymer molecular weight (MW). This is supported by nonfreezable water analysis, which is correlated to the inhibition time. The polymers tune the kinetics of the hydration process via interaction with and perturbation of the water molecules. The free water component in the polymer solution crystallizes at a very slow rate when in partially restricted mobility, whereas the bound water component increases in the reaction, with the polymer/water interface serving as the reaction sites. The appropriate MW (including average MW and polydispersity values) of the inhibitive polymers can give rise to maximal retardation of the hydrate crystal growth. This work will help control other multiphase crystallization kinetic processes through the design of inhibitors or promoters functioning in the interface.


Assuntos
Polímeros , Água , Caprolactama/análogos & derivados , Cinética , Espectroscopia de Ressonância Magnética , Água/química
17.
Waste Manag ; 143: 223-231, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35279014

RESUMO

Accumulation of plastic waste is harming eco-systems and it is time to move towards a circular plastic economy. Sustainable production and recycling processes for plastics are challenged mostly by the lack of renewable building blocks. This study investigates hydrothermal processing (HTP) as a platform for depolymerization of two commonly used plastic polymers. Subcritical water (300 °C; 10 MPa) was tested as a solvent to treat polyethylene terephthalate (PET) and nylon-6 individually and in a mixture for a short reaction time of 90 min. Monomer recovery, gaseous emissions, and the effect of polymer mixture were evaluated by comprehensive analyses of all reaction products. Terephthalic acid (TPA), one of two monomers of PET was recovered as a solid product with a mass yield of 75%. ε-caprolactam (CPL), the single monomer of nylon-6 was recovered as a liquid product with a mass yield of 92.5%. Following PET + nylon-6 co-processing, TPA recovery decreased by 20%, whereas CPL recovery was not affected. Since TPA and CPL were recovered in different phases, an easy separation can likely be created for co-processing of PET and nylon-6. While most HTP studies neglect analysis of the gas phase, acetaldehyde and cyclopentene emissions were detected during HTP of PET and nylon-6, respectively. As shown here, gaseous emissions, which may be toxic, should be addressed in future developments of HTP for plastics. The results presented here can contribute to developing HTP processes for plastic recycling, that will be part of a circular plastic economy and a more sustainable future.


Assuntos
Caprolactama , Polietilenotereftalatos , Caprolactama/análogos & derivados , Ácidos Ftálicos , Plásticos , Polietilenos , Polímeros , Reciclagem
18.
Adv Sci (Weinh) ; 9(12): e2104004, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187862

RESUMO

Microgels (µgels) swiftly undergo structural and functional degradation when they are exposed to shear forces, which potentially limit their applicability in, e.g., biomedicine and engineering. Here, poly(N-vinylcaprolactam) µgels that resist mechanical disruption through supramolecular hydrogen bonds provided by (+)-catechin hydrate (+C) are synthesized. When +C is added to the microgel structure, an increased resistance against shear force exerted by ultrasonication is observed compared to µgels crosslinked by covalent bonds. While covalently crosslinked µgels degrade already after a few seconds, it is found that µgels having both supramolecular interchain interactions and covalent crosslinks show the highest mechanical durability. By the incorporation of optical force probes, it is found that the covalent bonds of the µgels are not stressed beyond their scission threshold and mechanical energy is dissipated by the force-induced reversible dissociation of the sacrificial +C bonds for at least 20 min of ultrasonication. Additionally, +C renders the µgels pH-sensitive and introduces multiresponsivity. The µgels are extensively characterized using Fourier-transform infrared, Raman and quantitative nuclear magnetic resonance spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. These results may serve as blueprint for the preparation of many mechanically durable µgels.


Assuntos
Catequina , Microgéis , Caprolactama/análogos & derivados , Ligação de Hidrogênio , Polímeros/química
19.
Environ Sci Pollut Res Int ; 29(1): 653-662, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34338982

RESUMO

Zein has drawn attention for its great potential for biodegradability and adsorption of hexavalent chromium Cr(VI) that is a carcinogenic industrial pollutant. Zein is a biopolymer extracted from corn and is used for many purposes, but because of its poor stability in aqueous solution, a novel composite of zein and nylon-6 was used to synthesize a nanofibrous membrane using electrospinning to improve its stability and tensile strength. The scanning electron microscope (SEM) image of the zein/nylon-6 (ZN6) nanofiber membrane showed a smooth, beadless, and continuous structure of the nanofibers, but the Fourier transform infrared (FTIR) spectrum of pristine and Cr(VI) saturated ZN6 showed that peaks of secondary amide, carbonyl, and hydroxyl functional groups were involved in adsorption. Optimized experimental parameters were obtained with pH 2.0, contact time 60 min, adsorbent dosage 25 mg, and adsorbate concentration 5.0 mg Cr-VI/mL. Experimental results show that the ZN6 nanofibers removed 87% Cr(VI) with an adsorption capacity of 4.73 mg/g at ambient temperature. Also, the Langmuir isotherm fits well, and the adsorption process followed a pseudo-2nd-order kinetics with r2 of 0.90 and 0.99 respectively.


Assuntos
Nanofibras , Poluentes Químicos da Água , Zeína , Adsorção , Caprolactama/análogos & derivados , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
20.
Chemosphere ; 287(Pt 2): 132100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826889

RESUMO

An integrated multi-functional additive was fabricated by successively grafting melamine (MEL) and phytic acid (PhA) on multiwalled carbon-nanotubes (MWNCTs), and was then applied in PA6 to improve the flame retardancy and light aging resistance of the composite. The limit oxygen index of PA6 composite containing 7 wt% PhA-MEL-MWCNTs was increased to 26.4 from 21.0. The smoke and CO release were significantly reduced by 48% and 88% respectively, and the severe melt dripping of PA6 in burning was eliminated. It is proved that PhA-MEL-MWCNTs can absorb ultraviolet (UV) radiation, and hence significantly reduces the mechanical property loss of the PA6 composite after UV aging. The tensile strength of the aged PA6/7 wt%PhA-MEL-MWCNTs composite sample only decreased by 18.1%, which was significantly lower than the loss rate of the control aged PA6 sample (62.5%). This protocol provides a new opportunity for fabricating long-life flame retardant polyamide composites.


Assuntos
Caprolactama , Nanotubos de Carbono , Caprolactama/análogos & derivados , Nylons , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...