Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.972
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20230707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747790

RESUMO

Urban parks are not only important for the wellbeing of the human population, but are also widely considered to be potentially important sites for the conservation of biodiversity. However, they may offer risk parasitic infections, such as schistosomiasis and fascioliasis, which are both transmitted by freshwater snails. The present study investigated the occurrence of freshwater gastropods in urban parks of the Brazilian city of Rio de Janeiro, and their possible infection by helminths of medical-veterinary importance. Gastropods were collected from six parks (2021 - 2022) and examined for the presence of larval helminths. In all, 12 gastropod species from different families were collected: Ampullariidae, Assimineidae, Burnupidae, Lymnaeidae, Physidae, Planorbidae, Succineidae, and Thiaridae. The parasitological examination revealed cercaria of three types in five snail species, with the Pleurolophocerca cercariae type in Melanoides tuberculata (the most abundant species), Echinostoma cercariae in Physella acuta and Pomacea maculata, and Virgulate cercariae, in Pomacea sp. and Pomacea maculata. None of the Biomphalaria tenagophila and Pseudosuccinea columella (the most frequent species) specimens were parasitized by Schistosoma mansoni or Fasciola hepatica, respectively. Even so, some parks may represent a considerable potential risk for transmission of both Schistosoma mansoni and Fasciola hepatica, given the presence of these gastropod vectors and the frequent contact of visitors with the waterbodies.


Assuntos
Água Doce , Gastrópodes , Parques Recreativos , Animais , Brasil/epidemiologia , Água Doce/parasitologia , Gastrópodes/parasitologia , Gastrópodes/classificação , Humanos , Caramujos/parasitologia
2.
Infect Dis Poverty ; 13(1): 32, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711151

RESUMO

The three most important genera of snails for the transmission of schistosomes are Bulinus, Biomphalaria and Oncomelania. Each of these genera, found in two distantly related families, includes species that act as the intermediate host for one of the three most widespread schistosome species infecting humans, Schistosoma haematobium, S. mansoni and S. japonicum, respectively. An important step in the fight against schistosomiasis in Asia has been taken with the publication of the article "Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum", which means that genomes for all three major genera, including species across three continents, are now available in the public domain. This includes the first genomes of African snail vectors, namely Biomphalaria sudanica, Bi. pfeifferi and Bulinus truncatus, as well as high-quality chromosome level assemblies for South American Bi. glabrata. Most importantly, the wealth of new genomic and transcriptomic data is helping to establish the specific molecular mechanisms that underly compatibility between snails and their schistosomes, which although diverse and complex, may help to identify potential targets dictating host parasite interactions that can be utilised in future transmission control strategies. This new work on Oncomelania hupensis and indeed studies on other snail vectors, which provide deep insights into the genome, will stimulate research that may well lead to new and much needed control interventions.


Assuntos
Vetores de Doenças , Genômica , Caramujos , Animais , Caramujos/parasitologia , Humanos , Esquistossomose/transmissão , Esquistossomose/prevenção & controle , Esquistossomose/parasitologia , Interações Hospedeiro-Parasita
3.
BMC Vet Res ; 20(1): 197, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741097

RESUMO

The occurrence of trematodes among ruminants and their snail vectors is a major concern across various agro-ecological regions of Ethiopia. Trematodes pose significant threats to animals, causing considerable economic losses and impacting public health. In this study, we have investigated 784 ruminant fecal samples, and 520 abattoir samples, alongside the collection and identification of snail vectors from various agro-ecological regions. Fecal examinations revealed Fasciola, Paramphistomum and Schistosoma species infected 20.5% (95% CI: 17.6, 23.8), 11.7% (95% CI: 9.6, 14.2), and 6.3% (95% CI: 4.1, 9.1) of the animals, respectively. The overall prevalence of trematodes among ruminants was 28.8% (95% CI: 25.7, 32.1%), with 6.0% (95% CI: 4.3, 7.7) showing mixed infections. Fasciola was more prevalent in Asela (26%) compared to Batu (19%) and Hawassa (11.5%), while a higher proportion of animals in Batu were infected with Paramphistomum. Schistosoma eggs were detected only in Batu (12.5%), but not in other areas. Sheep and cattle exhibited higher infection rates with Fasciola, Paramphistoma, and Schistosoma compared to goats. Significant associations were observed between trematode infections and risk factors including agro-ecology, animal species, body condition score, and deworming practices. About 20.8% and 22.7% of the slaughtered animals harbored Fasciola and Paramphistomum flukes, respectively, with a higher prevalence in Asela and Hawassa abattoirs compared to Batu abattoir. Additionally, a total of 278 snails were collected from the study areas and identified as lymnae natalensis, lymnae trancatula, Biomphalaria pffiferi, Biomphlaria sudanica, and Bulinus globosus. In conclusion, the study highlights the widespread occurrence of trematode infections, emphasizing the need for feasible control measures to mitigate their economic and public health impacts.


Assuntos
Fezes , Caramujos , Infecções por Trematódeos , Animais , Etiópia/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia , Fezes/parasitologia , Prevalência , Caramujos/parasitologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/parasitologia , Cabras , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Bovinos , Trematódeos/isolamento & purificação , Trematódeos/classificação , Matadouros , Fasciola/isolamento & purificação , Paramphistomatidae/isolamento & purificação , Ruminantes/parasitologia
4.
Syst Parasitol ; 101(3): 41, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740609

RESUMO

Dicrocoeliid trematodes were detected from Iwasaki's snail-eating snake Pareas iwasakii in Iriomote Island, Okinawa Prefecture, Japan, and described as a new species Paradistomum dextra n. sp. in the present study. This new species can be distinguished from the type series of the other members of the genus based on size of eggs and morphological characteristics of body, oral and ventral suckers, and reproductive organs. However, the new species was hard to distinguish from Paradistomum megareceptaculum infecting snakes in Japan, including Iriomote Island where is the type locality of the new species, because it is closely similar to some part of the broad range of morphological variations in P. megareceptaculum. On the other hand, a partial sequence of 28S ribosomal DNA clearly distinguished these two species. Moreover, the new species' host snake Pareas iwasakii is reported to exclusively feed on land snails while host snakes of P. megareceptaculum feed on small vertebrates, indicating that the new species is also ecologically different from P. megareceptaculum. We also redescribed P. megareceptaculum based on adults sampled in this study and past studies to record the morphological variations of this species.


Assuntos
Especificidade da Espécie , Trematódeos , Animais , Japão , Trematódeos/classificação , Trematódeos/anatomia & histologia , Trematódeos/genética , Caramujos/parasitologia , RNA Ribossômico 28S/genética , Serpentes/parasitologia , Filogenia
5.
PeerJ ; 12: e16932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680893

RESUMO

Eulimidae is a highly diverse family of gastropods that are often parasites of echinoderms. They are cosmopolitan and live from the intertidal to great depths. Despite its wide geographic and bathymetric distribution, no species of Eulimidae have been reported for the Salas & Gómez Ridge to date. In this study, we describe Melanella martarum sp. nov., which was collected during the EPIC oceanographic cruise onboard RV Mirai (JAMSTEC, Japan) in 2019. Seven specimens were collected with a modified Agassiz trawl on the summit of seamount "Pearl" (Zhemchuznaya) in the Salas & Gómez Ridge (25.59°S, 89.13°W) at 545 m depth. The morphology of M. martarum sp. nov. was compared with other Melanella species reported for the area, including Chile and Rapa Nui. DNA was extracted and partial sequences of the mitochondrial genes Cytochrome Oxidase 1 (COI) and 16S rDNA, and the nuclear gene Histone 3 (H3) were sequenced. Melanella martarum sp. nov. has morphological characteristics that separate it from other species of Melanella, such as the thickness and color of the shell, and the shape of the protoconch. In addition, M. martarum sp. nov. was genetically differentiated from other Melanella spp. sequences (uncorrected p distances from 18,1-8.6% in mitochondrial COI and 16S rDNA to 3% in nuclear H3 sequences). Although there is not much molecular data available for Eulimidae, the phylogenetic analysis confirms the results obtained by morphology, placing the species found on the Salas & Gómez Ridge within the genus Melanella. The current study advances the understanding of the poorly known benthic fauna found on seamounts in the easternmost part of the Sala & Gómez ridge, a location distinguished by a high level of endemism.


Assuntos
Filogenia , Caramujos , Animais , Caramujos/parasitologia , Caramujos/genética , Caramujos/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Japão
6.
Acta Vet Scand ; 66(1): 15, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566122

RESUMO

BACKGROUND: Exotic and ornamental fish are highly popular companion animals resulting in a significant transcontinental trade of fish, invertebrates and aquatic plants. A major issue is the diseases associated with these organisms, as they have a major impact on health of the fish in both public and private household aquaria. A secondary issue is the trade with these products, which potentially may expand the distribution area and spread a range of diseases to new habitats. RESULTS: We here describe how Poecilia reticulata (guppy), produced in a private household aquarium, were invaded by cercariae of an exotic trematode released by imported Melanoides tuberculata snails. The fish presented with severe clinical signs (tremor, flashing, scraping of body against objects). A standard parasitological examination and morphometric identification showed scale pocket infections with a digenean trematode species within the genus Transversotrema. Molecular identification by PCR, sequencing and phylogenetic analyses of a 2646 bp sequence encoding ribosomal RNA (partial 18 S, ITS1, 5.8 S, ITS2, partial 28 S) was performed. The 1107 bp sequence of mitochondrial DNA (cox1) showed that the parasite differed from previously described Transversotrema species in M. tuberculata. Morphometrics of adult and larval specimens of this isolate also differed from previously described freshwater species within the genus. The new species was described and is named after Copenhagen, for its geographic origin. CONCLUSIONS: The genus Transversotrema comprises a range of species, adapted to a microhabitat in scalepockets of teleosts. A combination of morphological and molecular characterization techniques has been shown to provide a good differentiation between species. The fish were not purchased from a pet shop but produced in the home aquarium. This indicated that an infection pressure existed in the aquarium, where the source of infection was found to be exotic intermediate host snails M. tuberculata, which originally were imported and purchased from a pet shop. The potential spread of fish diseases associated with trade of fish and snails to new geographic regions, where climate conditions are favourable, is discussed.


Assuntos
Poecilia , Trematódeos , Infecções por Trematódeos , Animais , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Filogenia , Caramujos/parasitologia , Cercárias , Dinamarca
7.
PLoS Negl Trop Dis ; 18(4): e0012101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620032

RESUMO

BACKGROUND: Schistosomiasis is endemic in Nigeria, and the treatment is largely concentrated on children enrolled in schools. Consequently, the coverage of non-enrolled school-aged children is often neglected. Ajagba and Awosan are two communities in Nigeria that have never had any control intervention. Hence, this survey was designed to determine the endemicity of urogenital schistosomiasis and to evaluate the efficacy of a single-dose praziquantel in the communities. METHODS: Urine sample (10 mL) of each participant from Ajagba and Awosan communities was filtered through 12µm polycarbonate filter. The filter was placed on a microscope slide, and stained with a drop of 1% Lugol iodine solution. The stained slides were examined under the microscope and the numbers of S. haematobium eggs were counted. Water contact sites were searched for snail hosts and the snails collected were shed for Schistosoma cercariae. Data were analyzed using SPSS version 24.0 and the significance level was set at 95%. RESULTS: The overall prevalence of infection in the Ajagba community was 45.6% with a mean intensity of 61.1 ± 144.5 eggs/10 mL of urine, while the prevalence of infection in the Awosan community was 5.7% with a mean intensity of 1.4 ± 6.8 eggs/10 mL of urine. The school-aged children had a prevalence and mean intensity of infection of 73.1% and 111.6 ± 177.9 eggs/10 mL of urine, respectively. Following treatment, women had a higher egg reduction rate than men (p = 0.0283). Bulinus globosus were found in Ajagba but not in Awosan, with 5.7% shedding Schistosoma spp, cercariae. CONCLUSION: Urogenital schistosomiasis was hyperendemic in the Ajagba community, and hypoendemic in the Awosan community. The presence of Bulinus globosus supported the transmission of the schistosomiasis in the Ajagba community. Communities where schistosomiasis is still actively transmitted in Nigeria should be identified for effective intervention through the MDA programs.


Assuntos
Anti-Helmínticos , Praziquantel , População Rural , Schistosoma haematobium , Esquistossomose Urinária , Nigéria/epidemiologia , Humanos , Praziquantel/administração & dosagem , Praziquantel/uso terapêutico , Criança , Esquistossomose Urinária/tratamento farmacológico , Esquistossomose Urinária/epidemiologia , Animais , Feminino , Masculino , Adolescente , Schistosoma haematobium/efeitos dos fármacos , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/uso terapêutico , Adulto , Adulto Jovem , Prevalência , Caramujos/parasitologia , Pré-Escolar , Pessoa de Meia-Idade , Doenças Endêmicas , Contagem de Ovos de Parasitas
8.
Parasit Vectors ; 17(1): 126, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481352

RESUMO

BACKGROUND: Swimmer's itch, an allergic contact dermatitis caused by avian and mammalian blood flukes, is a parasitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia are infamous for their role in swimmer's itch cases. These parasites infect waterfowl as a final host, but incidental infections by cercariae in humans are frequently reported. Upon accidental infections of humans, parasite larvae will be recognized by the immune system and destroyed, leading to painful itchy skin lesions. However, one species, Trichobilharzia regenti, can escape this response in experimental animals and reach the spinal cord, causing neuroinflammation. In the last few decades, there has been an increase in case reports across Europe, making it an emerging zoonosis. METHODS: Following a reported case of swimmer's itch in Kampenhout in 2022 (Belgium), the transmission site consisting of a private pond and an adjacent creek was investigated through a malacological and parasitological survey. RESULTS: Six snail species were collected, including the widespread Ampullaceana balthica, a well-known intermediate host for Trichobilharzia parasites. Shedding experiments followed by DNA barcoding revealed a single snail specimen to be infected with T. regenti, a new species record for Belgium and by extension the Benelux. Moreover, it is the most compelling case to date of the link between this neurotropic parasite and cercarial dermatitis. Additionally, an Echinostomatidae sp. and Notocotylus sp. were isolated from two other specimens of A. balthica. However, the lack of reference DNA sequences for these groups in the online repositories prevented genus- and species-level identification, respectively. CONCLUSIONS: The presence of T. regenti in Belgium might have severe clinical implications and its finding highlights the need for increased vigilance and diagnostic awareness among medical professionals. The lack of species-level identification of the other two parasite species showcases the barcoding void for trematodes. Overall, these findings demonstrate the need for a Belgian framework to rapidly detect and monitor zoonotic outbreaks of trematode parasites within the One Health context.


Assuntos
Dermatite , Schistosomatidae , Esquistossomose , Dermatopatias Parasitárias , Infecções por Trematódeos , Animais , Humanos , Infecções por Trematódeos/parasitologia , Esquistossomose/epidemiologia , Schistosomatidae/genética , Dermatite/parasitologia , Zoonoses , Dermatopatias Parasitárias/epidemiologia , Caramujos/parasitologia , Aves/parasitologia , Mamíferos
9.
Zoonoses Public Health ; 71(4): 451-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553828

RESUMO

AIM: The rat lungworm, Angiostrongylus cantonensis, has recently been found in the city of Valencia, parasitizing rats, Rattus norvegicus and Rattus rattus, its natural definitive hosts. This is the first finding of this zoonotic nematode in continental Europe. After informing local and national health authorities, the collection of local terrestrial snails took place with the aim of elucidating their potential role as intermediate hosts of A. cantonensis. METHODS AND RESULTS: A total of 145 terrestrial snails, belonging to the species Cernuella virgata, Cornu aspersum, Eobania vermiculata, Otala punctata, Pseudotachea splendida, Rumina decollata and Theba pisana, were randomly collected between May and December 2022 in public gardens, parks and orchards in six districts of Valencia, in five of which A. cantonensis had been reported previously in rats. Once collected and identified, the snails were frozen at -20°C. Subsequently, the DNA was isolated and screened by PCR using specific primers targeting the A. cantonensis COI gene. Seven individual snails, belonging to the species C. virgata, C. aspersum and T. pisana, were positive, for an overall prevalence of 4.8%. The PCR product from one of them was sequenced by Sanger sequencing. CONCLUSIONS: The three positive terrestrial snail species are among the edible species that are frequently included in various dishes in Spain. C. virgata is reported as a previously unrecorded intermediate host and should be added to the list of more than 200 species of terrestrial snails that have been reported worldwide as intermediate hosts of the rat lungworm. Considering that these terrestrial snails may release infective larvae of A. cantonensis on leafy green vegetables on which they feed and during their handling and preparation for consumption, prophylactic measures to prevent human neuroangiostrongyliasis in Valencia and other regions to which this zoonotic parasite may spread are recommended.


Assuntos
Angiostrongylus cantonensis , Caramujos , Infecções por Strongylida , Zoonoses , Animais , Angiostrongylus cantonensis/isolamento & purificação , Angiostrongylus cantonensis/genética , Caramujos/parasitologia , Espanha/epidemiologia , Infecções por Strongylida/veterinária , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/parasitologia , Ratos , Humanos
10.
Infect Genet Evol ; 119: 105576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408586

RESUMO

Lymnaeid snails are some of the most widespread snails and are the first intermediate host of trematode parasites that affect human and livestock health. A full understanding of the genetic relationship of hosts and parasites is of paramount importance for effective parasite management. The present study assessed the prevalence of trematode larvae in lymnaeid snails and examined the genetic diversity of these snails collected across Thailand. We collected 672 lymnaeid snails from 39 locations in 22 provinces of six regions in Thailand. Subsequently, cercarial infection in the snails was observed by using the shedding method. Lymnaeid snails released 5 types of trematode cercariae, namely, xiphidiocercariae, echinostome cercariae I, echinostome cercariae II, furcocercous cercariae, and strigea cercariae. The phylogenetic analysis based on ITS2 and 28S rDNA sequences revealed 5 cercaria types assigned to four trematode families, of which two belong to the group of human intestinal flukes. Combination of shell morphology and sequence analysis of the mitochondrial COI and 16S rDNA genes, the lymnaeid snails were classified into two species, Radix rubiginosa and Orientogalba viridis. Moreover, the combined dataset of mtDNA genes (COI + 16S rDNA) from R. rubiginosa and O. viridis revealed 32 and 15 different haplotypes, respectively, of which only a few haplotypes were infected with cercariae. The genetic diversity and genetic structure revealed that R. rubiginosa and O. viridis experienced a bottleneck phenomenon, and showed limited gene flow between populations. Population demographic history analyses revealed that R. rubiginosa and O. viridis experienced population reductions followed by recent population expansion. These findings may improve our understanding of parasite-lymnaeid evolutionary relationships, as well as the underlying molecular genetic basis, which is information that can be used for further effective control of the spread of trematode disease.


Assuntos
Caramujos , Trematódeos , Animais , Humanos , Filogenia , Tailândia/epidemiologia , Caramujos/parasitologia , Trematódeos/genética , Trematódeos/anatomia & histologia , Cercárias/genética , DNA Ribossômico , Variação Genética
11.
Parasitol Int ; 100: 102867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38364969

RESUMO

Despite the importance of fish-borne trematodes of the family Opisthorchiidae as causative agents of human liver fluke disease, studies on these parasites outside Asia are relativally scarce. In South America, human focus of amphimerosis is known in Ecuador since the mid-20th century, and Amphimerus spp. have also been reported in wild and domestic mammals. Nevertheless, the knowledge on the snails that act as the first intermediate host of these potentially zoonotic parasites are scarce. Herein, a new cercaria of the pleurolophocercous morphotype found in the freshwater snail Idiopyrgus souleyetianus from Brazil was subjected to morphological and molecular studies. Multigene phylogenetic analyses based on 28S, 5.8S-ITS-2 and Cox-1 sequences enabled the identification of Amphimerus sp., a species distinct from that reported in humans from Ecuador. This cercariae was morphologically compared with other opisthorchiid cercariae known. The possible occurrence of human amphimerosis in Brazil is discussed.


Assuntos
Fasciola hepatica , Opisthorchidae , Trematódeos , Infecções por Trematódeos , Animais , Humanos , Brasil , Filogenia , Caramujos/parasitologia , Cercárias/genética , Cercárias/anatomia & histologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Mamíferos
12.
Acta Parasitol ; 69(1): 759-768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416327

RESUMO

PURPOSE: The Government of Indonesia committed to eliminating schistosomiasis by 2025. Collaboratively snail control became one of the crucial strategies to ensure that the prevalence of Schistosoma japonicum in Oncomelania hupensis lindoensis reaches zero by the end of the program. This research investigated the spatial cluster change of S. japonicum transmission foci in Indonesia between 2017 and 2021. METHODS: We mapped the snail foci, collected the snails, and calculated the snail density. We also conducted laboratory tests to detect the existence of cercariae in the snails. Identified infected snails were used to calculate the infection rate (IR) or snails' prevalence of schistosome cercariae among freshwater snails. We then analysed the spatial cluster using the Getis-Ord Gi* statistic to identify the hot and cold spots. RESULTS: The 5-year schistosomiasis elimination program successfully declined 18.84% of the snail foci and reduced 40.37% of the infected snail foci. Local spatial autocorrelation of snail density and infection rate identified that in 2017 and 2021, the number of cold spots decreased by 53.91% and 0%, while hot spots increased by 2.63% and 56.1%. The presence of more hot spots suggests a rise in the number of foci with high snail density and infection rates. The implementation of snail control was not optimal, and the parasite transmission through domestic animals still existed, causing the spatial cluster of hot spots to change during this period. Most hotspots have been observed near settlements, primarily in cocoa plantations, developed and deserted rice fields, grassland, and bush wetlands. CONCLUSION: During the schistosomiasis elimination program, the number of hot spots increased while cold spots decreased, and there were notable changes in the geographical distribution of hot spots, indicating a shift in the clustering pattern of schistosomiasis cases. The findings become essential for policymakers, particularly in selecting priority areas for intervention. In the Discussion section, we demonstrated the selection process based on the existence of hot and cold spots. Furthermore, we proposed that enhancing cross-sector integration is crucial, particularly in connection with the management of S. japonicum transmission through domestic animals.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Caramujos , Animais , Indonésia/epidemiologia , Caramujos/parasitologia , Esquistossomose Japônica/transmissão , Esquistossomose Japônica/epidemiologia , Esquistossomose Japônica/prevenção & controle , Erradicação de Doenças , Humanos , Análise Espacial
13.
PLoS One ; 19(2): e0288948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359003

RESUMO

Swimmer's itch (SI) is a dermatitis in humans caused by cercariae of avian and mammalian schistosomes which emerge from infected snails on a daily basis. Mitigation methods for SI have long been sought with little success. Copper sulfate application to the water to kill the snail hosts is the historically employed method, but is localized, temporary, and harmful to many aquatic species. Here, we test an alternative method to control Trichobilharzia stagnicolae, a species well-known to cause SI in northern Michigan and elsewhere in North America. Summer relocation of broods of the only known vertebrate host, common merganser (Mergus merganser), greatly reduced snail infection prevalence the following year on two large, geographically separated lakes in northern Michigan. Subsequent years of host relocation achieved and maintained snail infection prevalence at ~0.05%, more than an order of magnitude lower than pre-intervention. A Before-After-Control-Intervention (BACI) study design using multiple-year snail infection data from two intervention lakes and three control lakes demonstrates that dramatic lake-wide reduction of an avian schistosome can be achieved and is not due to natural fluctuations in the parasite populations. The relevance of reducing snail infection prevalence is demonstrated by a large seven-year data set of SI incidence in swimmers at a high-use beach, which showed a substantial reduction in SI cases in two successive years after relocation began. In addition, data from another Michigan lake where vertebrate-host based intervention occurred in the 1980's are analyzed statistically and show a remarkably similar pattern of reduction in snail infection prevalence. Together, these results demonstrate a highly effective SI mitigation strategy that avoids the use of environmentally suspect chemicals and removes incentive for lethal host removal. Biologically, the results strongly suggest that T. stagnicolae is reliant on the yearly hatch of ducklings to maintain populations at high levels on a lake and that the role of migratory hosts in the spring and fall is much less significant.


Assuntos
Dermatite , Schistosomatidae , Esquistossomose , Dermatopatias Parasitárias , Infecções por Trematódeos , Animais , Humanos , Lagos/parasitologia , Infecções por Trematódeos/parasitologia , Esquistossomose/epidemiologia , Dermatopatias Parasitárias/etiologia , Dermatopatias Parasitárias/parasitologia , Patos , Caramujos/parasitologia , Mamíferos
14.
Proc Biol Sci ; 291(2014): 20231766, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196367

RESUMO

Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogeneous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing prolonged dormancy yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, we investigated the extent to which parasite survival within snails is diminished. We conducted an investigation of seasonal snail schistosome dynamics in 109 ponds of variable ephemerality in Tanzania from August 2021 to July 2022. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and observed cercariae, though of lower magnitude in the fully desiccating than non-desiccating ponds. Second, we evaluated total yearly schistosome prevalence across an ephemerality gradient, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.


Assuntos
Schistosoma , Caramujos , Trematódeos , Animais , Lagoas/parasitologia , Tanzânia/epidemiologia , Análise Espaço-Temporal , Caramujos/parasitologia
15.
PLoS One ; 19(1): e0297761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277375

RESUMO

Indoplanorbis exustus is a freshwater gastropod belonging to the family Planorbidae. This snail is widely distributed across the tropics and plays an important role as the intermediate host for trematodes. However, relatively little is understood regarding the genetic relationship between I. exustus and trematodes. The goals of this study were to investigate the current transmission status of trematode cercariae in I. exustus in Thailand and to examine the genetic diversity, genetic structure, and demographic history of I. exustus. We collected 575 I. exustus from 21 provinces across six regions of Thailand and investigated cercarial infections by using the shedding method. I. exustus from two provinces were infected with cercarial trematodes, and two types of cercarial stages were molecularly identified as furcocercous cercaria and xiphidiocercariae. Phylogenetic tree analysis based on 28S rDNA and ITS2 sequences demonstrated that furcocercous cercaria and xiphidiocercariae were closely clustered with a clade of Euclinostomum sp. and Xiphidiocercariae sp., respectively. Phylogenetic and network analyses of I. exustus haplotypes based on the COI, 16S rDNA, and ITS1 genes demonstrated four main clades. Only snails in clade A were distributed in all regions of Thailand and harbored trematode cercariae. The level of genetic diversity of I. exustus was relatively high, but most populations were not genetically different, thus suggesting the appearance of gene flow within the I. exustus populations. Overall, the haplotype network was star-shaped, thus suggesting the recent demographic expansion of populations. This result was also supported by the unimodal mode of the mismatch distribution graph and the large negative values of the neutrality tests. Therefore, the I. exustus snail was likely another freshwater snail of the invasive species in Thailand. This information will aid in monitoring the spread of the parasitic trematodes carried by I. exustus from different populations.


Assuntos
Trematódeos , Infecções por Trematódeos , Animais , Filogenia , Tailândia/epidemiologia , Trematódeos/genética , Caramujos/parasitologia , DNA Ribossômico , Cercárias/genética , Genética Populacional
16.
Parasitol Res ; 123(1): 93, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212518

RESUMO

Indoplanorbis exustus, a freshwater pulmonate snail, is widely distributed in tropical and subtropical zones and plays a significant role as an intermediate host for trematode parasites. Various genetic markers have been used for species identification and phylogenetic studies of this snail. However, there are limited studies about their molecular genetics based on nuclear ribosomal DNA (rDNA) genes. A genetic analysis of I. exustus in Thailand was conducted based on the nuclear 18S rDNA (339 bp) and 28S rDNA (1036 bp) genes. Indoplanorbis snails were collected from 29 localities in 21 provinces covering six regions of Thailand. Nucleotide sequences from 44 snails together with sequences from the GenBank database were examined for phylogenetic relationships and genetic diversity. All sequences of the selected nucleotide regions exhibited a high level of similarity (99%) to the sequences of I. exustus in the GenBank database. The maximum likelihood tree based on the 18S and 28S rDNA fragment sequences of I. exustus in Thailand revealed only one group with clear separation from another genus in the family Planorbidae. The I. exustus 28S rDNA sequences showed intraspecific genetic divergence ranging from 0 to 0.78% and were classified into 8 different haplotypes. Conversely, the 18S rDNA data showed lower variation than the 28S rDNA data and revealed a single haplotype and intraspecific distances of zero among all sampled individuals. The haplotype network of 28S rDNA sequences of I. exustus in Thailand revealed six unique haplotypes and two haplotypes shared by at least two regions. Overall, both markers were successful in the identification of I. exustus. However, these markers, particularly the 18S rDNA, may not be suitable for genetic analysis within the species, particularly for population genetic studies, due to their limited variation as seen in this study. In summary, this study not only enhances understanding of genetic variation in I. exustus but is also useful for the selection of molecular markers in future genetic research.


Assuntos
Variação Genética , Caramujos , Humanos , Animais , DNA Ribossômico/genética , Filogenia , Tailândia , Caramujos/parasitologia , Água Doce
17.
Ecology ; 105(2): e4221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032549

RESUMO

Host heterogeneity can affect parasite transmission, but determining underlying traits and incorporating them into transmission models remains challenging. Body size is easily measured and affects numerous ecological interactions, including transmission. In the snail-schistosome system, larger snails have a higher exposure to parasites but lower susceptibility to infection per parasite. We quantified the effect of size-based heterogeneity on population-level transmission by conducting transmission trials in differently size-structured snail populations and competing size-dependent transmission models. Populations with greater proportions of large snails had lower prevalence, and small snails were shielded from infection by co-occurring large conspecifics. Furthermore, a fully dependent transmission model that incorporated body size in both exposure and susceptibility outperformed other candidate models considered. Incorporating traits such as body size, which are affected by and directly affect host ecology, into transmission models could yield insights into natural dynamics and disease mitigation in many systems.


Assuntos
Parasitos , Animais , Schistosoma , Caramujos/parasitologia , Interações Hospedeiro-Parasita
18.
Microsc Res Tech ; 87(2): 306-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800693

RESUMO

Schistosomiasis is one of the most common waterborne parasite illnesses, it is a major public health issue in developing countries. The polymerase chain reaction (PCR) technique is used to find Schistosoma haematobium DNA in Bulinus truncatus, which could speed up the discovery of infections before cercariae are shed. DraI-PCR detected S. haematobium infection at different infection intervals with bands at 300 bp in shedding snails 40 days after exposure and even on the first day after B. turancuts snails exposure to miracidia. Transmission electron microscopy showed the structure of sporocyst from 1 to 40 days post-exposure and activated hemocytes in infected non-shedding snails as well as sporocyst degradation. Flow cytometry was used to measure the percentage of Bax and TGF-ß1 positive stained cells that have been linked with infection progression. In conclusion, molecular tools and immune response play an important role in the strategy of controlling schistosomiasis through the early detection of larval stages in intermediate hosts toward certification of schistosomiasis elimination. RESEARCH HIGHLIGHTS: DraI-PCR allowed early detection of S. haematobium at 300 bp in B. truncatus snail. Transmission electron microscopy showed the structure of S. haematobium sporocyst in snail and activated hemocytes in non-shedding snail. Bax protein that induced apoptotic changes and Transforming Growth Factor Beta1 level have been linked with parasite development.


Assuntos
Bulinus , Esquistossomose , Animais , Bulinus/parasitologia , Schistosoma haematobium/genética , Caramujos/parasitologia , Imunidade
19.
Acta Trop ; 249: 107084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029954

RESUMO

Schistosomiasis is a chronic and debilitating neglected tropical disease (NTD), second only to malaria as one of the most devastating parasitic diseases. Caused by a parasitic flatworm of the genus Schistosoma, infection occurs when skin comes in contact with contaminated freshwater that contains schistosome-hosting snails. The disease continues to be endemic in many regions of the Philippines, where it poses a significant public health challenge due to a lack of healthcare resources. In the Philippines, additional mammalian reservoirs for the S. japonicum parasite, especially bovines such as carabaos, also facilitate the spread of schistosomiasis. We extend existing compartment models to include human, snail, bovine, and free-living Schistosoma for a comprehensive look at the transmission dynamics of the disease. Sensitivity analysis of model parameters shows that the carabaos themselves can sustain the endemicity of schistosomiasis. Thus, we consider the control method of farming mechanization to avoid contaminated freshwater sources. We find that a reduction of contaminated water contacts by at least 77% will break the transmission cycle and eliminate the disease. However, reducing the contact by about 70% will still result in decrease of human schistosomiasis prevalence to under 1% in 15 years or less. Achieving such high reduction of contact rates could be a daunting task, especially in rural areas. Still, the potential to eliminate or at least reduce the schistosomiasis prevalence should be considered an additional benefit of mechanization efforts in the Philippines.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Animais , Bovinos , Humanos , Esquistossomose Japônica/parasitologia , Filipinas/epidemiologia , Modelos Epidemiológicos , Esquistossomose/epidemiologia , Caramujos/parasitologia , China/epidemiologia , Mamíferos
20.
Rev Bras Parasitol Vet ; 32(4): e007023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018626

RESUMO

Many studies about fasciolosis control have been carried out, whether acting on the adult parasite or in Pseudosuccinea columella, compromising the development of the larval stages. The present study aimed to evaluate, under laboratory conditions, the susceptibility of P. columella to Heterorhabditis bacteriophora HP88, during for 24 and 48 hours of exposure. The snails were evaluated for 21 days for accumulated mortality; number of eggs laid; hatchability rate; biochemical changes; and histopathological analysis. We found that exposure induced a reduction in glucose and glycogen levels, characterizing a negative energy balance, due to the depletion of energy reserves as a result of the direct competition established by the nematode/endosymbiont bacteria complex in such substrates. A mortality rate of 48.25% and 65.52% was observed in the group exposed for 24 h and 48 h, respectively, along with significant impairment of reproductive biology in both exposed groups in relation to the respective controls. The results presented here show that P. columella is susceptible to the nematode H. bacteriophora, with the potential to be used as an alternative bioagent in the control of this mollusk, especially in areas considered endemic for fascioliasis, in line with the position expressed by the World Health Organization Health.


Assuntos
Fasciolíase , Rabditídios , Animais , Controle Biológico de Vetores/métodos , Caramujos/parasitologia , Fasciolíase/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...