Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(2): e16560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234207

RESUMO

Some bacteria can degrade organic micropollutants (OMPs) as primary carbon sources. Due to typically low OMP concentrations, these bacteria may benefit from supplemental assimilation of natural substrates present in the pool of dissolved organic matter (DOM). The biodegradability of such auxiliary substrates and the impacts on OMP removal are tightly linked to biotransformation pathways. Here, we aimed to elucidate the biodegradability and effect of different DOM constituents for the carbofuran degrader Novosphingobium sp. KN65.2, using a novel approach that combines pathway prediction, laboratory experiments, and fluorescence spectroscopy. Pathway prediction suggested that ring hydroxylation reactions catalysed by Rieske-type dioxygenases and flavin-dependent monooxygenases determine the transformability of the 11 aromatic compounds used as model DOM constituents. Our approach further identified two groups with distinct transformation mechanisms amongst the four growth-supporting compounds selected for mixed substrate biodegradation experiments with the pesticide carbofuran (Group 1: 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde; Group 2: p-coumaric acid, ferulic acid). Carbofuran biodegradation kinetics were stable in the presence of both Group 1 and Group 2 auxiliary substrates. However, Group 2 substrates would be preferable for bioremediation processes, as they showed constant biodegradation kinetics under different experimental conditions (pre-growing KN65.2 on carbofuran vs. DOM constituent). Furthermore, Group 2 substrates were utilisable by KN65.2 in the presence of a competitor (Pseudomonas fluorescens sp. P17). Our study thus presents a simple and cost-efficient approach that reveals mechanistic insights into OMP-DOM biodegradation.


Assuntos
Carbofurano , Sphingomonadaceae , Biodegradação Ambiental , Carbofurano/metabolismo , Espectrometria de Fluorescência , Carbono/metabolismo , Compostos Orgânicos , Sphingomonadaceae/metabolismo
2.
Environ Toxicol Pharmacol ; 102: 104243, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572996

RESUMO

This study investigated the metabolic transformation of carbofuran in seven species of mammals using LC-MS/MS and liver microsomes. The results revealed species-specific differences in metabolite formation, indicating the potential role of metabolic pathways in toxicity and risk assessment. The majority of carbofuran was metabolized through the 3-hydroxycarbofuran pathway, with the highest levels observed in dogLM and the lowest in humanLM. Further analysis was conducted to investigate the human cytochrome P450-mediated metabolism of carbofuran, with CYP3A4 being found to be the most efficient enzyme with the highest contribution to the 3-hydroxycarbofuran pathway. Inhibition of CYP3A4 with ketoconazole resulted in a substantial decrease in carbofuran metabolism. In addition, carbofuran exhibited inhibitory effects on human CYP3A4 and CYP2B6, demonstrating the potential for carbofuran to interact with these enzymes. The findings highlight the importance of in vitro screening for metabolic processes and provide insights into the biotransformation of carbofuran.


Assuntos
Carbofurano , Animais , Humanos , Carbofurano/toxicidade , Carbofurano/metabolismo , Citocromo P-450 CYP3A/metabolismo , Cromatografia Líquida , Especificidade da Espécie , Espectrometria de Massas em Tandem , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Mamíferos
3.
Pest Manag Sci ; 79(10): 3926-3933, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37245216

RESUMO

BACKGROUND: The insecticide carbosulfan is usually applied as a soil treatment or seed-coating agent, and so may be absorbed by crops and pose dietary risks. Understanding the uptake, metabolism and translocation of carbosulfan in crops is conducive to its safe application. In this study, we investigated the distribution of carbosulfan and its toxic metabolites in maize plants at both the tissue and subcellular levels, and explored the uptake and translocation mechanism of carbosulfan. RESULTS: Carbosulfan was mainly taken up by maize roots via the apoplast pathway, was preferentially distributed in cell walls (51.2%-57.0%) and most (85.0%) accumulated in roots with only weak upward translocation. Carbofuran, the main metabolite of carbosulfan in maize plants, was primarily stored in roots. However, carbofuran could be upwardly translocated to shoots and leaves because of its greater distribution in root-soluble components (24.4%-28.5%) compared with carbosulfan (9.7%-14.5%). This resulted from its greater solubility compared with its parent compound. The metabolite 3-hydroxycarbofuran was found in shoots and leaves. CONCLUSION: Carbosulfan could be passively absorbed by maize roots, mainly via the apoplastic pathway, and transformed into carbofuran and 3-hydroxycarbofuran. Although carbosulfan mostly accumulated in roots, its toxic metabolites carbofuran and 3-hydroxycarbofuran could be detected in shoots and leaves. This implies that there is a risk in the use of carbosulfan as a soil treatment or seed coating. © 2023 Society of Chemical Industry.


Assuntos
Carbofurano , Carbofurano/metabolismo , Zea mays/metabolismo , Carbamatos/metabolismo , Raízes de Plantas/metabolismo
4.
Environ Res ; 229: 115894, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068725

RESUMO

Biodegradation, harnessing the metabolic versatility of microorganisms to reduce agrochemical contaminations, is commonly studied with enriched planktonic cells but overlooking the dominant lifestyle of microorganisms is to form biofilms, which compromises the efficiency of biodegradation in natural environment. Here, we employed a carbofuran-degrading bacterium Pseudomonas stutzeri PS21 to investigate how the bacterial biofilms formed and responded to agrochemicals. First, the PS21 biofilms formed with a core of bacterial cells enclosing with extracellular polymeric substances (EPSs), and the biofilms were active and resilient when exposed to carbofuran (up to 50 mg L-1). The formation was regulated by the second messenger bis-(3'-5')-cyclic di-guanosine monophosphate signaling, which strengthened the structural resistance and metabolic basis of biofilms to remain the degrading efficiency as comparable as the planktonic cells. Second, carbofuran distributed heterogeneously in the near-biofilm microenvironment via the covalent adsorption of biofilms, which provided a spontaneous force that enhanced the combination of carbofuran with biofilms to maintain high degrading activity. Additionally, we elucidated the biodegradation was driven by the integrated metabolic system of biofilms involving the extracellular enzymes located in the EPSs. This study exhibited the structural and metabolic advantages of microbial biofilms, highlighting the attractive potentials of exploring biofilm-based strategies to facilitate the in-situ bioremediation of organic contaminations.


Assuntos
Carbofurano , Pseudomonas stutzeri , Biodegradação Ambiental , Pseudomonas stutzeri/metabolismo , Carbofurano/metabolismo , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Bactérias
5.
Exp Eye Res ; 227: 109355, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572166

RESUMO

Pesticide exposure to eyes is a major source of ocular morbidities in adults and children all over the world. Carbofuran (CF), N-methyl carbamate, pesticide is most widely used as an insecticide, nematicide, and acaricide in agriculture, forestry, and gardening. Contact or ingestion of carbofuran causes high morbidity and mortality in humans and pets. Pesticides are absorbed in the eye faster than other organs of the body and damage ocular tissues very quickly. Carbofuran exposure to eye causes blurred vision, pain, loss of coordination, anti-cholinesterase activities, weakness, sweating, nausea and vomiting, abdominal pain, endocrine, reproductive, and cytotoxic effects in humans depending on amount and duration of exposure. Pesticide exposure to eye injures cornea, conjunctiva, lens, retina, and optic nerve and leads to abnormal ocular movement and vision impairment. Additionally, anticholinesterase pesticides like carbofuran are known to cause salivation, lacrimation, urination, and defecation (SLUD). Carbofuran and its two major metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) are reversible inhibitors of acetylcholinesterase (AChE) which regulates acetylcholine (ACh), a neurohumoral chemical that plays an important role in corneal wound healing. The corneal epithelium contains high levels of ACh whose accumulation by AChE inhibition after CF exposure overstimulates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs). Hyper stimulation of mAChRs in the eye causes miosis (excessive constriction of the pupil), dacryorrhea (excessive flow of tears), or chromodacryorrhea (red tears). Recent studies reported alteration of autophagy mechanism in human cornea in vitro and ex vivo post carbofuran exposure. This review describes carbofuran toxicity to the eye with special emphasis on corneal morbidities and blindness.


Assuntos
Carbofurano , Inseticidas , Praguicidas , Adulto , Criança , Humanos , Carbofurano/toxicidade , Carbofurano/metabolismo , Acetilcolinesterase/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Inibidores da Colinesterase , Praguicidas/toxicidade , Receptores Colinérgicos
6.
Environ Sci Process Impacts ; 24(11): 2140-2152, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222150

RESUMO

Natural dissolved organic matter (DOM) can serve as an additional substrate for organic micropollutant (OMP) degrading bacteria, thus influencing OMP biodegradation in aquatic systems. DOM biodegradation depends on the OMP degrader's ability to grow on different DOM constituents, and on its capability to compete for DOM constituents against the rest of the resident aquatic microbial community. This study aimed to investigate the growth of a model OMP degrader strain, Novosphingobium sp. KN65.2 (assumed specialist), isolated for its ability to mineralize carbofuran, on thirteen DOM constituents; compare its metabolic capabilities to those of a common freshwater strain (Pseudomonas fluorescens sp. P17) (generalist); and to evaluate competition for specific compounds. Growth experiments were carried out in pure- and mixed culture batch experiments. The DOM constituents tested included aromatic amino acids and a range of phenolic acids (lignin derivatives). The OMP degrader could biodegrade approximately half of the tested compounds. It showed a high specialization for substrates containing a hydroxyl-group in the para-position of the primary aromatic ring substituent. However, its broad substrate range enabled the strain to grow on the same number of auxiliary substrates as the generalist. Moreover, the OMP degrader was able to successfully compete against the generalist for the biodegradation of one (4-hydroxybenzaldehyde) out of three substrates (4-hydroxybenzoic acid, 4-hydroxybenzaldehyde, L-tyrosine), which were biodegraded by both strains. The study results provide insight on the substrate specificity of a model OMP degrader, which can inform development of modeling frameworks investigating the influence of DOM on OMP biodegradation.


Assuntos
Benzaldeídos , Carbofurano , Especificidade por Substrato , Biodegradação Ambiental , Carbofurano/metabolismo
7.
Appl Environ Microbiol ; 88(22): e0102422, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36314801

RESUMO

The worldwide use of the carbamate insecticide carbofuran has caused considerable concern about its environmental fate. Degradation of carbofuran by Sphingobium sp. strain CFD-1 is initiated via the hydrolysis of its ester bond by carbamate hydrolase CehA to form carbofuran phenol. In this study, another carbofuran-degrading strain, Sphingobium sp. CFD-2, was isolated. Subsequently, a cfd gene cluster responsible for the catabolism of carbofuran phenol was predicted by comparing the genomes of strains CFD-1, CFD-2, and Novosphingobium sp. strain KN65.2. The key genes verified to be involved in the catabolism of carbofuran phenol within the cfd cluster include the hydroxylase gene cfdC, epoxide hydrolase gene cfdF, and ring cleavage dioxygenase gene cfdE and are responsible for the successive conversion of carbofuran phenol, resulting in complete ring cleavage. These carbofuran-catabolic genes (cehA and the cfd cluster) are distributed on two plasmids in strain CFD-1 and are highly conserved among the carbofuran-degrading sphingomonad strains. The mobile genetic element IS6100 flanks cehA and the cfd gene cluster, indicating the importance of horizontal gene transfer in the formation of carbofuran degradation gene clusters. The elucidation of the molecular mechanism of carbofuran catabolism provides insights into the evolutionary scenario of the conserved carbofuran catabolic pathway. IMPORTANCE Owing to the extensive use of carbofuran over the past 50 years, bacteria have evolved catabolic pathways to mineralize this insecticide, which plays an important role in eliminating carbofuran residue in the environment. In this study, the cfd gene cluster, responsible for the catabolism of carbofuran phenol, was predicted by comparing sphingomonad genomes. The function of key enzymatic genes in this gene cluster was identified. Furthermore, the carbamate hydrolase gene cehA and the cfd gene cluster are highly conserved in different carbofuran-degrading strains. Additionally, the horizontal gene transfer elements flanking the cfd gene cluster were investigated. These findings help elucidate the molecular mechanism of microbial carbofuran degradation and enhance our understanding of the evolutionary mechanism of the carbofuran catabolic pathway.


Assuntos
Carbofurano , Inseticidas , Sphingomonadaceae , Carbofurano/metabolismo , Inseticidas/metabolismo , Biodegradação Ambiental , Sphingomonadaceae/metabolismo , Genômica , Fenóis/metabolismo
8.
Int J Legal Med ; 136(6): 1585-1596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36050422

RESUMO

Carbofuran is a pesticide widely used in agricultural context to kill insects, mites, and flies by ingestion or contact. Along with literature review, we aimed to (i) present the clinical, autopsy, and toxicological findings of carbofuran self-poisonings in two 69-year-old twins, resulting in the death of one of them and (ii) assess carbofuran metabolite distribution using molecular networking. Quantitative analysis of carbofuran and its main metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) was carried out using an original liquid chromatography-tandem mass spectrometry method on biological samples (cardiac or peripheral blood, urine, bile, and gastric contents). Toxicological analysis of post-mortem samples (twin 1) highlighted high concentrations of carbofuran and its metabolites in cardiac blood, bile, and gastric contents. These compounds were also quantified in blood and/or urine samples of the living brother (twin 2), confirming poisoning. Using molecular networking approach to facilitate visualization of mass spectrometry datasets and sample-to-sample comparisons, we detected two more metabolites (7-phenol-carbofuran and 3-hydroxycarbofuran glucuronide) in bile (twin 1) and urine (twin 2). These results highlight the value of (i) these compounds as carbofuran consumption markers and (ii) bile samples in post-mortem analysis to confirm poisoning. From an analytical point of view, molecular networking allowed the detection and interpretation of carbofuran metabolite ammonium adducts which helped to confirm their identification annotations, as well as their structural data. From a clinical point of view, the different outcomes between the two brothers are discussed. Overall, these cases provide novel information regarding the distribution of carbofuran and its metabolites in poisoning context.


Assuntos
Compostos de Amônio , Carbofurano , Inseticidas , Praguicidas , Animais , Carbofurano/análogos & derivados , Carbofurano/análise , Carbofurano/química , Carbofurano/metabolismo , Glucuronídeos , Inseticidas/análise , Masculino , Fenóis
9.
J Hazard Mater ; 439: 129644, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35882171

RESUMO

The combined toxicity of heavy metals and pesticides to aquatic organisms is still largely unexplored. In this study, we investigated the combined impacts of cadmium (Cd) and carbofuran (CAR) on female zebrafish (F0 generation) and their following F1 generation. Results showed that mixtures of Cd and CAR induced acute synergistic effects on both zebrafish adults of the F0 generation and embryos of the F1 generation. Combined exposure to Cd and CAR could obviously alter the hepatic VTG level of females, and the individual exposures increased the relative mRNA levels of vtg1 and vtg2. Through maternal transmission, co-exposure of Cd and CAR caused toxicity to 4-day-old larvae of the F1 generation, evidenced by the significant changes in T4 and VTG levels, CYP450 activity, and the relative transcriptional levels of genes related to the hormone, oxidative stress, and apoptosis. These effects were also reflected by the global gene expression pattern to 7-day-old larvae of F1 generation using the transcriptomic analysis, and they could also affect energy metabolism. Our results provided a more comprehensive insight into the transgenerational toxic impacts of heavy metal and pesticide mixtures. These findings highlighted that it was highly necessary to consider transgenerational exposures in the ecological risk assessment of chemical mixtures.


Assuntos
Carbofurano , Metais Pesados , Praguicidas , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Carbofurano/metabolismo , Carbofurano/toxicidade , Feminino , Larva , Metais Pesados/metabolismo , Praguicidas/metabolismo , Transcriptoma , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560037

RESUMO

Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.


Assuntos
Carbofurano/metabolismo , Células Imobilizadas/metabolismo , Enterobacter/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Enterobacter/isolamento & purificação
11.
Ecotoxicol Environ Saf ; 201: 110729, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485491

RESUMO

The transformation of carbosulfan (CSN) in apples was investigated during oven-drying, microwave drying, and sun-drying. CSN transformed primarily into carbofuran (COA) during these drying processes. The conversion kinetics of CSN and COA was fitted by curve regression and mainly conformed to quadratic models (R2 = 0.70-0.97). Oven-drying promoted the transformation of CSN into COA. Microwave drying resulted in the highest scavenging capacity against CSN and COA (41%-100%). Moreover, a transformation mechanism was proposed on the basis of density functional theory (DFT) calculation. The COA originated from a series of chemical reactions involving hydroxyl substitution, cleavage, and oxidation; this result was further confirmed on the basis of molecular electrostatic potential (MEP) and molecular orbital theory. Furthermore, the toxicity and stability of CSN and COA were evaluated with the T.E.S.T. program. COA was less toxic than CSN to aquatic organisms but more toxic than CSN to rats. Therefore, COA production should be avoided during drying. Microwave drying was found to be the optimum choice for drying apples.


Assuntos
Carbamatos/metabolismo , Dessecação/métodos , Manipulação de Alimentos/métodos , Malus/química , Animais , Organismos Aquáticos/efeitos dos fármacos , Carbamatos/química , Carbamatos/toxicidade , Carbofurano/química , Carbofurano/metabolismo , Carbofurano/toxicidade , Dessecação/instrumentação , Manipulação de Alimentos/instrumentação , Sequestradores de Radicais Livres/análise , Ratos
12.
Chemosphere ; 259: 127419, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593003

RESUMO

Carbofuran is one of the most toxic broad-spectrum and systemic N-methyl carbamate pesticide, which is extensively applied as insecticide, nematicide and acaricide for agricultural, domestic and industrial purposes. It is extremely lethal to mammals, birds, fish and wildlife due to its anticholinesterase activity, which inhibits acetyl-cholinesterase and butyrylcholinesterse activity. In humans, carbofuran is associated with endocrine disrupting activity, reproductive disorders, cytotoxic and genotoxic abnormalities. Therefore, cleanup of carbofuran-contaminated environments is of utmost concern and urgently needs an adequate, advanced and effective remedial technology. Microbial technology (bacterial, fugal and algal species) is a very potent, pragmatic and ecofriendly approach for the removal of carbofuran. Microbial enzymes and their catabolic genes exhibit an exceptional potential for bioremediation strategies. To understand the specific mechanism of carbofuran degradation and involvement of carbofuran hydrolase enzymes and genes, highly efficient genomic approaches are required to provide reliable information and unfold metabolic pathways. This review briefly discusses the carbofuran toxicity and its toxicological impact into the environment, in-depth understanding of carbofuran degradation mechanism with microbial strains, metabolic pathways, molecular mechanisms and genetic basis involved in degradation.


Assuntos
Biodegradação Ambiental , Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Poluentes Ambientais/toxicidade , Acetilcolinesterase/metabolismo , Animais , Carbamatos , Carbofurano/metabolismo , Inibidores da Colinesterase/metabolismo , Poluentes Ambientais/metabolismo , Humanos , Hidrolases , Inseticidas/metabolismo , Inseticidas/toxicidade , Redes e Vias Metabólicas
13.
Ecotoxicol Environ Saf ; 200: 110734, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464440

RESUMO

Microorganisms' role in pesticide degradation has been studied widely. Insitu treatments of effluents containing pesticides such as biological beds (biobeds) are efficient biological systems where biomixture (mixture of substrates) and microorganisms are the keys in pesticide treatment; however, microbial activity has been studied poorly, and its potential beyond biobeds has not been widely explored. In this study, the capacity of microbial consortium and bacteria-pure strains isolated from a biomixture (soil-straw; 1:1, v/v) used to treat agricultural effluents under real conditions were evaluated during a bioremediation process of five pesticides commonly used Yucatan Mexico. Atrazine, carbofuran, and glyphosate had the highest degradations (>90%) using the microbial consortium; 2,4-D and diazinon were the most persistent (DT50 = 8.64 and 6.63 days). From the 21 identified bacteria species in the microbial consortium, Pseudomonas nitroreducens was the most abundant (52%) according to identified sequences. For the pure strains evaluation 2,4-D (DT50 = 9.87 days), carbofuran (DT50 = 8.27 days), diazinon (DT50 = 8.80 days) and glyphosate (DT50 = 8.59 days) were less persistent in the presence of the mixed consortium (Ochrobactrum sp. DGG-1-3, Ochrobactrum sp. Ge-14, Ochrobactrum sp. B18 and Pseudomonas citronellolis strain ADA-23B). Time, pesticide, and strain type were significant (P < 0.05) in pesticide degradation, so this process is multifactorial. Microbial consortium and pure strains can be used to increase the biobed efficiency by inoculation, even in the remediation of soil contaminated by pesticides in agricultural areas.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Praguicidas/metabolismo , Poluentes do Solo/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Agricultura , Atrazina/metabolismo , Bactérias/isolamento & purificação , Biodegradação Ambiental , Carbofurano/metabolismo , Diazinon/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Pseudomonas/isolamento & purificação , Solo/química , Glifosato
14.
Chemosphere ; 253: 126635, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278909

RESUMO

Carbofuran, a carbamate pesticide, is widely used in developing countries to manage insect pests. Studies have found that carbofuran posed potential risks for the neurotransmitter systems of non-target species, we speculated that these disruptive effects on the neurotransmitter systems could trigger anxiety-like behaviors. In this study, female zebrafish were exposed to environmental levels (5, 50, and 500 µg/L) of carbofuran for 48 h to evaluate the effects of carbofuran on anxiety-like behaviors. Results showed that zebrafish exhibited more anxiety-like behaviors which proved by the observed higher bottom trend and more erratic movements in the novel tank after carbofuran treatment. In order to elucidate the underlying molecular mechanisms of carbofuran-induced anxiety-promoting effects, we measured the levels of neurotransmitters, precursors, and major metabolites, along with the level of gene expression and the enzyme activities involved in neurotransmitter synthesis and metabolism. The results demonstrated that acute carbofuran exposure stimulated the mRNA expression and enzyme activity of tyrosine hydroxylase, which sequentially induced the increased levels of dopamine and norepinephrine. Tyrosine hydroxylase inhibitor relieved the anxiety-related changes induced by carbofuran, confirming the overactive tyrosine hydroxylase-mediated accumulation of dopamine and norepinephrine in the brain was one of the main reasons for carbofuran-induced anxiety-like behaviors in the female zebrafish. Overall, our study indicated the environmental health risks of carbamate pesticide in inducing neurobehavioral disorders and provided novel insights into the investigation of the relevant underlying mechanisms.


Assuntos
Comportamento Animal/efeitos dos fármacos , Carbofurano/toxicidade , Inseticidas/toxicidade , Peixe-Zebra/fisiologia , Animais , Ansiedade/induzido quimicamente , Encéfalo/efeitos dos fármacos , Carbofurano/metabolismo , Dopamina/metabolismo , Feminino , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra/metabolismo
15.
J Basic Microbiol ; 60(5): 390-399, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32115726

RESUMO

Excessive use of pesticides in agricultural fields is a matter of great concern for living beings as well as the environment across the world, in particular, the third world countries. Therefore, there is an urgent need to find out an effective way to degrade these hazardous chemicals from the soil in an environment-friendly way. In the current project, a bacterial species were isolated through enrichment culture from carbofuran-supplemented rice-field soil and identified as a carbofuran degrader. The rate of carbofuran degradation by this bacterial species was evaluated using reverse-phase high-performance liquid chromatography (RP-HPLC), which confirmed the ability to utilize as a carbon source up to 4 µg/ml of 99% technical grade carbofuran. The morphological, physiological, biochemical characteristics and phylogenetic analysis of the 16S rRNA sequence showed that this strain belongs to the genus of Enterobacter sp. (sequence accession number LC368285 in DDBJ), and the optimum growth condition for the isolated strain was 37°C at pH 7.0. Moreover, an antibiotic sensitivity test showed that it was susceptible to azithromycin, penicillin, ceftazidime, ciprofloxacin, and gentamycin, and the minimal inhibitory concentration value of gentamycin was 400 µg/ml against the bacteria. It shows beyond doubt from the RP-HPLC quantification that the isolated bacterium has the ability to detoxify carbofuran (99% pure). Finally, the obtained results imply that the isolated strain of Enterobacter can be used as a potential and effective carbofuran degrader for bioremediation of contaminated sites through bioaugmentation.


Assuntos
Carbofurano/metabolismo , Enterobacter/metabolismo , Inseticidas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Animais , Antibacterianos/farmacologia , Artemia/efeitos dos fármacos , Biodegradação Ambiental , Carbofurano/toxicidade , Cromatografia Líquida de Alta Pressão , Enterobacter/classificação , Enterobacter/efeitos dos fármacos , Enterobacter/crescimento & desenvolvimento , Inseticidas/toxicidade , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Poluentes do Solo/toxicidade
16.
Molecules ; 25(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947900

RESUMO

Mammalian paraoxonase-1 hydrolyses a very broad spectrum of esters such as certain drugs and xenobiotics. The aim of this study was to determine whether carbamates influence the activity of recombinant PON1 (rePON1). Carbamates were selected having a variety of applications: bambuterol and physostigmine are drugs, carbofuran is used as a pesticide, while Ro 02-0683 is diagnostic reagent. All the selected carbamates reduced the arylesterase activity of rePON1 towards the substrate S-phenyl thioacetate (PTA). Inhibition dissociation constants (Ki), evaluated by both discontinuous and continuous inhibition measurements (progress curves), were similar and in the mM range. The rePON1 displayed almost the same values of Ki constants for Ro 02-0683 and physostigmine while, for carbofuran and bambuterol, the values were approximately ten times lower and two times higher, respectively. The affinity of rePON1 towards the tested carbamates was about 3-40 times lower than that of PTA. Molecular modelling of rePON1-carbamate complexes suggested non-covalent interactions with residues of the rePON1 active site that could lead to competitive inhibition of its arylesterase activity. In conclusion, carbamates can reduce the level of PON1 activity, which should be kept in mind, especially in medical conditions characterized by reduced PON1 levels.


Assuntos
Arildialquilfosfatase/metabolismo , Carbamatos/metabolismo , Acetatos/metabolismo , Carbofurano/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Humanos , Modelos Moleculares , Nitrofenóis/metabolismo , Fenóis/metabolismo , Terbutalina/análogos & derivados , Terbutalina/metabolismo
17.
Ecotoxicol Environ Saf ; 189: 109938, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759739

RESUMO

A novel carbofuran-degrading strain CFD-1 was isolated and preliminarily identified as Sphingbium sp. This strain was able to utilize carbofuran as the sole carbon source for growth. The carbofuran hydrolase gene cehA was cloned from strain CFD-1 and expressed in Escherichia coli. CehA could hydrolyze carbamate pesticides including carbofuran and carbaryl efficiently, while it showed poor hydrolysis ability against isoprocarb, propoxur, oxamyl and aldicarb. CehA displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and Kcat values of CehA for carbofuran were 133.22 ±â€¯5.70 µM and 9.48 ±â€¯0.89 s-1, respectively. The site-directed mutation experiment showed that His313, His315, His453 and His495 played important roles in the hydrolysis of carbofuran by CehA. Furthermore, the sequence of cehA is highly conserved among different carbofuran-degrading strains, and there are mobile elements around cehA, indicating that it may be transferred horizontally between different strains.


Assuntos
Carbofurano/metabolismo , Praguicidas/metabolismo , Sphingomonadaceae/fisiologia , Aminoácidos/metabolismo , Biodegradação Ambiental , Carbamatos , Carbaril/metabolismo , Hidrolases/metabolismo , Hidrólise
18.
J Agric Food Chem ; 67(45): 12348-12356, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31638788

RESUMO

Carbosulfan is a carbamate insecticide that has been widely used in agriculture. However, studies showed that carbosulfan could be highly toxic to aquatic organisms. The metabolism of carbosulfan in adult zebrafish is still largely unexplored, and the metabolites in individual or in combination may pose a potential threat to zebrafish. In the present study, the bioaccumulation and metabolism of carbosulfan in zebrafish (Danio rerio) were assessed, and the main metabolites, including carbofuran and 3-hydroxycarbofuran, were determined. The toxicity of carbosulfan and its metabolites individually or in combination to zebrafish was also investigated. The bioaccumulation and metabolism experiment indicated that carbosulfan was not highly accumulated in zebrafish, with a bioaccumulation factor of 18 after being exposed to carbosulfan for 15 days, and the metabolism was fast, with a half-life of 1.63 d. The two main metabolites were relatively persistent, with half-lives of 3.33 and 5.68 d for carbofuran and 3-hydroxycarbofuran, respectively. The acute toxicity assay showed that carbofuran and 3-hydroxycarbofuran had 96-h LC50 values of 0.15 and 0.36 mg/L, showing them to be more toxic than carbosulfan (96-h LC50 = 0.53 mg/L). Combinations of binary or ternary mixtures of carbosulfan and its metabolites displayed coincident synergistic effects on acute toxicity, with additive index (AI) values of 1.9-14.3. In the livers and gills of zebrafish exposed to carbosulfan, carbofuran, and 3-hydroxycarbofuran, activities of catalase, superoxide dismutase, and glutathione-S-transferase were significantly changed in most cases, and the content of malondialdehyde was greatly increased, indicating that carbosulfan and its metabolites induced varying degrees of oxidative stress. The metabolites were more persistent and toxic to zebrafish and exhibit coincident synergistic effects in combination. These results can provide evidence for the potential risk of pesticides and highlight the importance of a systematic assessment for the combination of the precursor and its metabolites.


Assuntos
Carbamatos/metabolismo , Carbamatos/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Peixe-Zebra/metabolismo , Animais , Carbofurano/análogos & derivados , Carbofurano/metabolismo , Carbofurano/toxicidade , Catalase , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Dose Letal Mediana , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Bioresour Technol ; 282: 417-424, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884462

RESUMO

The present study demonstrates EPS production by Cupriavidus sp. ISTL7 along with its capability to remediate a toxic carbamate pesticide, carbofuran. The strain ISTL7 efficiently degraded approximately 98% of carbofuran (400 ppm) within 96 h. GC-MS analysis showed catabolic metabolites of degradation which included carbofuran-7-phenol, methylamine, 2-hydroxy-3-(3-methylpropan-2-ol)benzene-N-methyl-carbamate etc. EPS production from the mineral medium supplemented with carbofuran was observed to be 3.112 ±â€¯0.3682 g L-1. FTIR confirmed its carbohydrate composition and the monomeric sugars: glucose, xylose, sorbitol and fructose were identified by GC-MS analysis. The toxic potential of degradation experiment and the produced EPS was evaluated on HepG2 (mammalian liver cell line). The cytotoxicity of carbofuran was reduced upon bacterial degradation and the formed EPS was found to be non-toxic as inferred from percentage cell viability. The present research can possibly influence the development strategies of biological remediation.


Assuntos
Matriz Extracelular de Substâncias Poliméricas/metabolismo , Carbamatos/metabolismo , Carbofurano/metabolismo , Cupriavidus/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metilaminas/metabolismo , Fenóis/metabolismo
20.
Environ Monit Assess ; 190(9): 538, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30132217

RESUMO

Persistence and metabolism of carbofuran in the soil and sugarcane plant were studied under tropical sugarcane ecosystem. Residues of carbofuran and its metabolites in the soil, sugarcane leaf, and juice were determined by employing matrix-specific sample preparation methods and gas chromatography equipped with mass spectrometry. The recoveries of carbofuran, 3-keto carbofuran, and 3-hydroxy carbofuran were in the range of 88.75 ± 2.58-100.25 ± 2.38, 90.38 ± 2.61-98.24 ± 4.78, and 89.25 ± 3.11-98.10 ± 3.19%, respectively, at three levels of fortification across the three matrices involved in the study. At recommended dose (carbofuran 3% CG at 2 kg a.i./ha), the initial deposit of carbofuran in the soil was 14.390 ± 1.727 µg/g. The total residues comprising both carbofuran and 3-hydroxy carbofuran were detected up to 105 days after treatment with the half-life of 10.83 days. The parent compound and its metabolite were detected and quantified in the sugarcane plant (leaves and juice) from 14 days after application of carbofuran in the soil. The total residues (carbofuran and 3-hydroxy carbofuran) were detected in the leaves and cane juice up to 75 and 30 days after treatment, respectively.


Assuntos
Carbofurano/análise , Monitoramento Ambiental , Inseticidas/análise , Saccharum/química , Poluentes do Solo/análise , Carbofurano/análogos & derivados , Carbofurano/metabolismo , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/metabolismo , Resíduos de Praguicidas/análise , Folhas de Planta/química , Saccharum/metabolismo , Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...