Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 581: 25-30, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34653675

RESUMO

The industrial yeast Pichia pastoris can utilize amino acids as the sole source of carbon. It possesses a post-transcriptional regulatory circuit that governs the synthesis of cytosolic glutamate dehydrogenase 2 (GDH2) and phosphoenolpyruvate carboxykinase (PEPCK), key enzymes of amino acid catabolism. Here, we demonstrate that the post-transcriptional regulatory circuit is activated during carbon starvation resulting in the translation of GDH2 and PEPCK mRNAs. GDH2 and PEPCK synthesis is abrogated in Δatg1 indicating a key role for autophagy or an autophagy-related process. Finally, carbon-starved Δgdh2 and Δpepck exhibit poor survival. This study demonstrates a key role for amino acid catabolism during carbon starvation, a phenomenon hitherto unreported in other yeast species.


Assuntos
Carbono/deficiência , Proteínas Fúngicas/genética , Desidrogenase de Glutamato (NADP+)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , RNA Mensageiro/genética , Saccharomycetales/efeitos dos fármacos , Aminoácidos/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia , Carbono/farmacologia , Proteínas Fúngicas/agonistas , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Desidrogenase de Glutamato (NADP+)/biossíntese , Metabolismo/genética , Viabilidade Microbiana , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Biossíntese de Proteínas , RNA Mensageiro/agonistas , RNA Mensageiro/biossíntese , Saccharomycetales/enzimologia , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117124

RESUMO

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Assuntos
Citoplasma/fisiologia , Escherichia coli/fisiologia , Carbono/deficiência , Carbono/farmacologia , Citoplasma/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Nitrogênio/análise , Fósforo/análise
3.
Plant Physiol ; 185(2): 318-330, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721901

RESUMO

Inorganic phosphate (Pi) and nitrogen (N) are essential nutrients for plant growth. We found that a five-fold oversupply of nitrate rescues Arabidopsis (Arabidopsis thaliana) plants from Pi-starvation stress. Analyses of transgenic plants that overexpressed GFP-AUTOPHAGY8 showed that an oversupply of nitrate induced autophagy flux under Pi-depleted conditions. Expression of DIN6 and DIN10, the carbon (C) starvation-responsive genes, was upregulated when nitrate was oversupplied under Pi starvation, which suggested that the plants recognized the oversupply of nitrate as C starvation stress because of the reduction in the C/N ratio. Indeed, formation of Rubisco-containing bodies (RCBs), which contain chloroplast stroma and are induced by C starvation, was enhanced when nitrate was oversupplied under Pi starvation. Moreover, autophagy-deficient mutants did not release Pi (unlike wild-type plants), exhibited no RCB accumulation inside vacuoles, and were hypersensitive to Pi starvation, indicating that RCB-mediated chlorophagy is involved in Pi starvation tolerance. Thus, our results showed that the Arabidopsis response to Pi starvation is closely linked with N and C availability and that autophagy is a key factor that controls plant growth under Pi starvation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Carbono/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fosfatos/deficiência , Ribulose-Bifosfato Carboxilase/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Autofagia , Carbono/deficiência , Cloroplastos/fisiologia , Microautofagia , Mutação , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Estresse Fisiológico , Vacúolos/metabolismo
4.
Curr Biol ; 30(16): 3243-3251.e3, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619488

RESUMO

Photodegradation of aboveground senescent plant material (plant litter) due to exposure to solar radiation has been identified as a dominant control on carbon (C) loss in semi-arid ecosystems [1], upturning traditional models of C cycling based only on available moisture and litter quality. In addition to the photochemical mineralization of organic matter [1, 2], sunlight alters the chemistry of cell walls in plant litter [3, 4], making them more susceptible to subsequent biotic degradation [5-7]. Nevertheless, the interactive effects of sunlight exposure, climate seasonality, and biotic decomposition on C turnover remain unresolved in terrestrial ecosystems. We show here that exposure to sunlight accelerated litter decomposition in a Patagonian woodland with a marked dry summer season. Controls on initial decomposition varied seasonally from direct photochemical mineralization in the dry summer to biotic degradation in the wet winter. By manipulating sunlight received by plant litter using spectral filters that attenuated ultraviolet and short-wave visible light, we demonstrate that direct photodegradation and its legacy, associated with increased microbial access to labile carbohydrates, are responsible for the acceleration of aboveground C turnover in this Mediterranean-type climate. Across plant species and over a 2-year period, litter exposed to the full solar spectrum decomposed twice as fast as litter that received attenuated sunlight. Changes in vegetation cover or biodiversity due to projected increased drought and dry season length [8] will likely exacerbate C losses from aboveground litter due to sunlight exposure, negatively impacting the C balance in ecosystems that are particularly vulnerable to global change [9].


Assuntos
Bactérias/metabolismo , Carbono/deficiência , Ecossistema , Folhas de Planta/metabolismo , Plantas/metabolismo , Estações do Ano , Luz Solar , Florestas , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Plantas/microbiologia , Plantas/efeitos da radiação
5.
Plant Cell Environ ; 43(4): 819-835, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31834629

RESUMO

Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.


Assuntos
Actinidia/metabolismo , Antocianinas/metabolismo , Metabolismo dos Carboidratos , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Fosfatos Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Trealose/análogos & derivados , Actinidia/genética , Carbono/deficiência , Perfilação da Expressão Gênica , Genes de Plantas/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/metabolismo , Fatores de Transcrição/genética , Trealose/metabolismo
6.
Plant Cell ; 31(12): 2912-2928, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31615847

RESUMO

The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Metaloproteases/metabolismo , Nutrientes/deficiência , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Repressoras/metabolismo , Synechocystis/metabolismo , Aclimatação/genética , Proteínas de Bactérias/genética , Carbono/deficiência , Carbono/metabolismo , Expressão Gênica , Metaloproteases/genética , Mutação , Nitrogênio/deficiência , Nitrogênio/metabolismo , Nutrientes/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Fosforilação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica , Regulon/genética , Proteínas Repressoras/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Synechocystis/enzimologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Cell ; 31(12): 2973-2995, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31615848

RESUMO

Under nutrient and energy-limiting conditions, plants up-regulate sophisticated catabolic pathways such as autophagy to remobilize nutrients and restore energy homeostasis. Autophagic flux is tightly regulated under these circumstances through the AuTophaGy-related1 (ATG1) kinase complex, which relays upstream nutrient and energy signals to the downstream components that drive autophagy. Here, we investigated the role(s) of the Arabidopsis (Arabidopsis thaliana) ATG1 kinase during autophagy through an analysis of a quadruple mutant deficient in all four ATG1 isoforms. These isoforms appear to act redundantly, including the plant-specific, truncated ATG1t variant, and like other well-characterized atg mutants, homozygous atg1abct quadruple mutants display early leaf senescence and hypersensitivity to nitrogen and fixed-carbon starvations. Although ATG1 kinase is essential for up-regulating autophagy under nitrogen deprivation and short-term carbon starvation, it did not stimulate autophagy under prolonged carbon starvation. Instead, an ATG1-independent response arose requiring phosphatidylinositol-3-phosphate kinase (PI3K) and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), possibly through phosphorylation of the ATG6 subunit within the PI3K complex by the catalytic KIN10 subunit of SnRK1. Together, our data connect ATG1 kinase to autophagy and reveal that plants engage multiple pathways to activate autophagy during nutrient stress, which include the ATG1 route as well as an alternative route requiring SnRK1 and ATG6 signaling.plantcell;31/12/2973/FX1F1fx1.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/genética , Carbono/deficiência , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carbono/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Nitrogênio/deficiência , Nitrogênio/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Isoformas de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Vacúolos/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Molecules ; 24(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248219

RESUMO

To investigate the effect of carbon defects on the hydrophilicity of the whole surface of the coal pyrite, the adsorption of the single H2O molecule at different sites of the coal pyrite surface was studied with the DFT calculation. It was found that, like the ideal pyrite, the single H2O molecule can stably adsorb at the doping-position, the ortho-position and the meta-position of the coal pyrite. The covalent bond and anti-bond were formed between O (water molecule) and Fe (the coal pyrite) through the Fe 3d orbital and O 2p orbital. Meanwhile, the S-H bond was replaced by the C-H bond. But away from the carbon defect centre, the adsorption of the single H2O molecule increased gradually and the Fe-O covalent bond strength between the single H2O molecule and the pyrite strengthened, which eventually became close to that of the undoped coal pyrite surface.


Assuntos
Carbono/química , Carbono/deficiência , Carvão Mineral/análise , Interações Hidrofóbicas e Hidrofílicas , Ferro/química , Teoria Quântica , Sulfetos/química , Adsorção , Algoritmos , Modelos Moleculares , Modelos Teóricos , Propriedades de Superfície , Água/química
9.
Commun Biol ; 2: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30623104

RESUMO

Drought-induced tree death has become a serious problem in global forest ecosystems. Two nonexclusive hypotheses, hydraulic failure and carbon starvation, have been proposed to explain tree die-offs. To clarify the mechanisms, we investigated the physiological processes of drought-induced tree death in saplings with contrasting Huber values (sapwood area/total leaf area). First, hydraulic failure and reduced respiration were found in the initial process of tree decline, and in the last stage carbon starvation led to tree death. The carbohydrate reserves at the stem bases, low in healthy trees, accumulated at the beginning of the declining process due to phloem transport failure, and then decreased just before dying. The concentrations of non-structural carbohydrates at the stem bases are a good indicator of tree damage. The physiological processes and carbon sink-source dynamics that occur during lethal drought provide important insights into the adaptive measures underlying forest die-offs under global warming conditions.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carbono/deficiência , Secas , Árvores/fisiologia , Trema/fisiologia , Florestas , Japão , Floema/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água/fisiologia , Xilema/fisiologia
10.
Cell Host Microbe ; 24(1): 120-132.e6, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-30008292

RESUMO

In the mammalian gut, bacteria compete for resources to maintain their populations, but the factors determining their success are poorly understood. We report that the human gut bacterium Bacteroides thetaiotaomicron relies on the stringent response, an intracellular signaling pathway that allocates resources away from growth, to survive carbon starvation and persist in the gut. Genome-scale transcriptomics, 13C-labeling, and metabolomics analyses reveal that B. thetaiotaomicron uses the alarmone (p)ppGpp to repress multiple biosynthetic pathways and upregulate tricarboxylic acid (TCA) cycle genes in these conditions. During carbon starvation, (p)ppGpp triggers accumulation of the metabolite alpha-ketoglutarate, which itself acts as a metabolic regulator; alpha-ketoglutarate supplementation restores viability to a (p)ppGpp-deficient strain. These studies uncover how commensal bacteria adapt to the gut by modulating central metabolism and reveal that halting rather than accelerating growth can be a determining factor for membership in the gut microbiome.


Assuntos
Bacteroides thetaiotaomicron/fisiologia , Carbono/deficiência , Trato Gastrointestinal/microbiologia , Guanosina Pentafosfato/metabolismo , Ácidos Cetoglutáricos/metabolismo , Animais , Bacteroides thetaiotaomicron/genética , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/fisiologia , Guanosina Pentafosfato/genética , Humanos , Metabolômica , Camundongos , Organismos Livres de Patógenos Específicos , Ácido Succínico/metabolismo , Transcriptoma
11.
Elife ; 72018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29624167

RESUMO

26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required for granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.


Assuntos
Autofagia , Carbono/deficiência , Grânulos Citoplasmáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitinação
12.
Nature ; 553(7687): 194-198, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29227988

RESUMO

Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.


Assuntos
Carbono/análise , Carbono/metabolismo , Ecossistema , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Incêndios Florestais/estatística & dados numéricos , Cálcio/análise , Cálcio/metabolismo , Carbono/deficiência , Sequestro de Carbono , Mapeamento Geográfico , Pradaria , Nitrogênio/deficiência , Fósforo/análise , Fósforo/metabolismo , Potássio/análise , Potássio/metabolismo , Análise Espaço-Temporal , Fatores de Tempo
13.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29046541

RESUMO

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Assuntos
Carbono/deficiência , Secas , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Mudança Climática , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Dinâmica Populacional , Estresse Fisiológico
14.
J Exp Bot ; 68(18): 5221-5232, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29036658

RESUMO

Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve.


Assuntos
Metabolismo dos Carboidratos/efeitos da radiação , Carbono/deficiência , Populus/fisiologia , Biomassa , Carbono/efeitos da radiação , Escuridão , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Populus/efeitos da radiação , Plântula/fisiologia , Plântula/efeitos da radiação , Amido/metabolismo , Árvores
15.
Nature ; 548(7669): 549-554, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28813411

RESUMO

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Assuntos
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldeído/química , Formaldeído/metabolismo , Redes e Vias Metabólicas , Mutagênicos/química , Mutagênicos/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Carbono/deficiência , Linhagem Celular , Galinhas , Coenzimas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Inativação Metabólica , Camundongos , Nucleotídeos/biossíntese , Oxirredução , Serina/química , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo
16.
Appl Microbiol Biotechnol ; 101(14): 5925-5936, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28540423

RESUMO

A stand-alone down-flow hanging sponge (DHS) system with a two-stage configuration was operated for 700 days to treat synthetic soft drink wastewater at 3000 mg/L chemical oxygen demand (COD). Throughout the operation, >90% COD and total organic carbon (TOC) removal efficiency was obtained by the first stage, and a final effluent of COD <60 mg/L (TOC <20 mg/L) was consistently maintained with the second stage. Lower organic removal efficiency was observed to closely correlate with lower pH, higher volatile fatty acid (VFA) concentration, and higher suspended solid (SS) in the effluent. Occasionally, biomass sloughing was observed as a cause to unstable reactor performance in the first stage. The microbial community of the retained biomass on the sponges differed significantly based on spatial locations of sponges, sampling time points, and loading shocks. In general, Proteobacteria were found to be more abundant in the reactor at an organic removal efficiency >80% than that at <50%. Specifically, operational taxonomic units closely related to Tolumonas auensis and Rivicola pingtungensis were identified as important populations that were responsible for degrading the major substrate in the soft drink wastewater toward to the end of the reactor operation. In addition, high abundance of Bacteroidetes in the reactor was speculated to be responsible for the VFA accumulation in the effluent. This study demonstrated that stand-alone DHS reactor could be used in treating high-strength wastewater efficiently.


Assuntos
Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Bebidas Gaseificadas , Consórcios Microbianos/fisiologia , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Biomassa , Carbono/deficiência , Carbono/metabolismo , Variação Genética , Nitrogênio , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , RNA Ribossômico 16S , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
17.
Dev Cell ; 41(1): 33-46.e7, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28399398

RESUMO

Plants encounter a variety of stresses and must fine-tune their growth and stress-response programs to best suit their environment. BES1 functions as a master regulator in the brassinosteroid (BR) pathway that promotes plant growth. Here, we show that BES1 interacts with the ubiquitin receptor protein DSK2 and is targeted to the autophagy pathway during stress via the interaction of DSK2 with ATG8, a ubiquitin-like protein directing autophagosome formation and cargo recruitment. Additionally, DSK2 is phosphorylated by the GSK3-like kinase BIN2, a negative regulator in the BR pathway. BIN2 phosphorylation of DSK2 flanking its ATG8 interacting motifs (AIMs) promotes DSK2-ATG8 interaction, thereby targeting BES1 for degradation. Accordingly, loss-of-function dsk2 mutants accumulate BES1, have altered global gene expression profiles, and have compromised stress responses. Our results thus reveal that plants coordinate growth and stress responses by integrating BR and autophagy pathways and identify the molecular basis of this crosstalk.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Autofagia , Proteínas Nucleares/metabolismo , Desenvolvimento Vegetal , Receptores Citoplasmáticos e Nucleares/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/química , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Brassinosteroides/farmacologia , Carbono/deficiência , Ciclo do Carbono/efeitos dos fármacos , Proteínas de Ligação a DNA , Secas , Fosforilação/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Bioresour Technol ; 201: 65-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26638135

RESUMO

In a waste into resource strategy, a selection of polyhydroxybutyrate (PHB)-accumulating organisms from activated sludge was achieved in an open continuous culture under acetic acid and phosphorus limitation. Once the microbial population was selected at a dilution rate (D), an increase in phosphorus limitation degree was applied in order to study the intracellular phosphorus plasticity of selected bacteria and the resulting capacity to produce PHB. Whatever D, all selected populations were able to produce PHB. At a D, the phosphorus availability determined the phosphorus-cell content which in turn fixed the amount of cell. All the remaining carbon was thus directed toward PHB. By decreasing D, microorganisms adapted more easily to higher phosphorus limitation leading to higher PHB content. A one-stage continuous reactor operated at D=0.023h(-)(1) gave reliable high PHB productivity with PHB content up to 80%. A two-stage reactor could ensure better productivity while allowing tuning product quality.


Assuntos
Bactérias/crescimento & desenvolvimento , Carbono/deficiência , Fósforo/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Esgotos , Bactérias/metabolismo , Consórcios Microbianos
19.
Int. microbiol ; 18(3): 189-194, sept. 2015. graf, tab, ilus
Artigo em Inglês | IBECS | ID: ibc-152259

RESUMO

Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive (AU)


No disponible


Assuntos
Deinococcus/crescimento & desenvolvimento , Bactérias/metabolismo , Temperatura Alta , Citometria de Fluxo/métodos , Sobrevivência , Carbono/deficiência
20.
Sci Rep ; 5: 11813, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134148

RESUMO

Integrating carbon (C), nitrogen (N), and sulfur (S) metabolism is essential for the growth and development of living organisms. MicroRNAs (miRNAs) play key roles in regulating nutrient metabolism in plants. However, how plant miRNAs mediate crosstalk between different nutrient metabolic pathways is unclear. In this study, deep sequencing of Arabidopsis thaliana small RNAs was used to reveal miRNAs that were differentially expressed in response to C, N, or S deficiency. Comparative analysis revealed that the targets of the differentially expressed miRNAs are involved in different cellular responses and metabolic processes, including transcriptional regulation, auxin signal transduction, nutrient homeostasis, and regulation of development. C, N, and S deficiency specifically induced miR169b/c, miR826 and miR395, respectively. In contrast, miR167, miR172, miR397, miR398, miR399, miR408, miR775, miR827, miR841, miR857, and miR2111 are commonly suppressed by C, N, and S deficiency. In particular, the miRNAs that are induced specifically by a certain nutrient deficiency are often suppressed by other nutrient deficiencies. Further investigation indicated that the modulation of nutrient-responsive miRNA abundance affects the adaptation of plants to nutrient starvation conditions. This study revealed that miRNAs function as important regulatory nodes of different nutrient metabolic pathways.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Arabidopsis/crescimento & desenvolvimento , Carbono/deficiência , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , MicroRNAs/metabolismo , Nitrogênio/deficiência , Nitrogênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Enxofre/deficiência , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...