Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 100(5): 480-490, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34503976

RESUMO

Carboxylesterase (CES) 2, an important metabolic enzyme, plays a critical role in drug biotransformation and lipid metabolism. Although CES2 is very important, few animal models have been generated to study its properties and functions. Rat Ces2 is similar to human CES2A-CES3A-CES4A gene cluster, with highly similar gene structure, function, and substrate. In this report, CRISPR-associated protein-9 (CRISPR/Cas9) technology was first used to knock out rat Ces2a, which is a main subtype of Ces2 mostly distributed in the liver and intestine. This model showed the absence of CES2A protein expression in the liver. Further pharmacokinetic studies of diltiazem, a typical substrate of CES2A, confirmed the loss of function of CES2A both in vivo and in vitro. At the same time, the expression of CES2C and CES2J protein in the liver decreased significantly. The body and liver weight of Ces2a knockout rats also increased, but the food intake did not change. Moreover, the deficiency of Ces2a led to obesity, insulin resistance, and liver fat accumulation, which are consistent with the symptoms of nonalcoholic fatty liver disease (NAFLD). Therefore, this rat model is not only a powerful tool to study drug metabolism mediated by CES2 but also a good disease model to study NAFLD. SIGNIFICANCE STATEMENT: Human carboxylesterase (CES) 2 plays a key role in the first-pass hydrolysis metabolism of most oral prodrugs as well as lipid metabolism. In this study, CRISPR/Cas9 technology was used to knock out Ces2a gene in rats for the first time. This model can be used not only in the study of drug metabolism and pharmacokinetics but also as a disease model of nonalcoholic fatty liver disease (NAFLD) and other metabolic disorders.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Carboxilesterase/deficiência , Carboxilesterase/genética , Técnicas de Silenciamento de Genes/métodos , Animais , Anti-Hipertensivos/farmacologia , Sequência de Bases , Diltiazem/farmacologia , Relação Dose-Resposta a Droga , Feminino , Resistência à Insulina/fisiologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ratos , Ratos Sprague-Dawley
2.
J Lipid Res ; 62: 100093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34153284

RESUMO

The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.


Assuntos
Ésteres do Colesterol/metabolismo , Fígado/metabolismo , Animais , Carboxilesterase/deficiência , Carboxilesterase/metabolismo , Células Cultivadas , Hidrólise , Camundongos , Camundongos Knockout , Camundongos Transgênicos
3.
Epilepsy Behav ; 111: 107229, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32575012

RESUMO

Delayed treatment of cholinergic seizure results in benzodiazepine-refractory status epilepticus (SE) that is thought, at least in part, to result from maladaptive trafficking of N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid type A (GABAA) receptors, the effects of which may be ameliorated by combination therapy with the NMDA receptor antagonist ketamine. Our objective was to establish whether ketamine and midazolam dual therapy would improve outcome over midazolam monotherapy following soman (GD) exposure when evaluated in a mouse model that, similar to humans, lacks plasma carboxylesterase, greatly reducing endogenous scavenging of GD. In the current study, continuous cortical electroencephalographic activity was evaluated in male and female plasma carboxylesterase knockout mice exposed to a seizure-inducing dose of GD and treated with midazolam or with midazolam and ketamine combination at 40 min after seizure onset. Ketamine and midazolam combination reduced GD-induced lethality, seizure severity, and the number of mice that developed spontaneous recurrent seizure (SRS) compared with midazolam monotherapy. In addition, ketamine-midazolam combination treatment reduced GD-induced neuronal degeneration and microgliosis. These results support that combination of antiepileptic drug therapies aimed at correcting the maladaptive GABAA and NMDA receptor trafficking reduces the detrimental effects of GD exposure. Ketamine may be a beneficial adjunct to midazolam in reducing the epileptogenesis and neuroanatomical damage that follows nerve agent exposure and pharmacoresistant SE.


Assuntos
Encéfalo/patologia , Carboxilesterase/sangue , Ketamina/administração & dosagem , Midazolam/administração & dosagem , Soman/toxicidade , Estado Epiléptico/sangue , Animais , Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Carboxilesterase/deficiência , Quimioterapia Combinada , Eletroencefalografia/métodos , Feminino , Masculino , Camundongos , Camundongos Knockout , Convulsões/sangue , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
4.
Ann N Y Acad Sci ; 1479(1): 94-107, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32027397

RESUMO

Chemical warfare nerve agent exposure leads to status epilepticus that may progress to epileptogenesis and severe brain pathology when benzodiazepine treatment is delayed. We evaluated the dose-response effects of delayed midazolam (MDZ) on toxicity induced by soman (GD) in the plasma carboxylesterase knockout (Es1-/- ) mouse, which, similar to humans, lacks plasma carboxylesterase. Initially, we compared the median lethal dose (LD50 ) of GD exposure in female Es1-/- mice across estrous with male mice and observed a greater LD50 during estrus compared with proestrus or with males. Subsequently, male and female GD-exposed Es1-/- mice treated with a dose range of MDZ 40 min after seizure onset were evaluated for survivability, seizure activity, and epileptogenesis. GD-induced neuronal loss and microglial activation were evaluated 2 weeks after exposure. Similar to our previous observations in rats, delayed treatment with MDZ dose-dependently increased survival and reduced seizure severity in GD-exposed mice, but was unable to prevent epileptogenesis, neuronal loss, or gliosis. These results suggest that MDZ is beneficial against GD exposure, even when treatment is delayed, but that adjunct therapies to enhance protection need to be identified. The Es1-/- mouse GD exposure model may be useful to screen for improved medical countermeasures against nerve agent exposure.


Assuntos
Carboxilesterase/deficiência , Midazolam/farmacologia , Agentes Neurotóxicos/toxicidade , Caracteres Sexuais , Soman/toxicidade , Estado Epiléptico , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Knockout , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/enzimologia , Estado Epiléptico/genética , Estado Epiléptico/prevenção & controle
5.
J Lipid Res ; 60(4): 880-891, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30737251

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Triacylglycerol accumulation in the liver is a hallmark of NAFLD. Metabolic studies have confirmed that increased hepatic de novo lipogenesis (DNL) in humans contributes to fat accumulation in the liver and to NAFLD progression. Mice deficient in carboxylesterase (Ces)1d expression are protected from high-fat diet-induced hepatic steatosis. To investigate whether loss of Ces1d can also mitigate steatosis induced by over-activated DNL, WT and Ces1d-deficient mice were fed a lipogenic high-sucrose diet (HSD). We found that Ces1d-deficient mice were protected from HSD-induced hepatic lipid accumulation. Mechanistically, Ces1d deficiency leads to activation of AMP-activated protein kinase and inhibitory phosphorylation of acetyl-CoA carboxylase. Together with our previous demonstration that Ces1d deficiency attenuated high-fat diet-induced steatosis, this study suggests that inhibition of CES1 (the human ortholog of Ces1d) might represent a novel pharmacological target for prevention and treatment of NAFLD.


Assuntos
Carboxilesterase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Sacarose/antagonistas & inibidores , Triglicerídeos/metabolismo , Animais , Carboxilesterase/deficiência , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sacarose/administração & dosagem , Sacarose/efeitos adversos
6.
Mol Cancer Ther ; 17(11): 2389-2398, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30093567

RESUMO

Carboxylesterase 1c (CES1c) is responsible for linker-drug instability and poor pharmacokinetics (PK) of several antibody-drug conjugates (ADC) in mice, but not in monkeys or humans. Preclinical development of these ADCs could be improved if the PK in mice would more closely resemble that of humans and is not affected by an enzyme that is irrelevant for humans. SYD985, a HER2-targeting ADC based on trastuzumab and linker-drug vc-seco-DUBA, is also sensitive to CES1c. In the present studies, we first focused on the interaction between CES1c and SYD985 by size- exclusion chromatography, Western blotting, and LC/MS-MS analysis, using recombinant CES1c and plasma samples. Intriguingly, CES1c activity not only results in release of the active toxin DUBA but also in formation of a covalent bond between CES1c and the linker of vc-seco-DUBA. Mass spectrometric studies enabled identification of the CES1c cleavage site on the linker-drug and the structure of the CES1c adduct. To assess the in vivo impact, CES1c-/- SCID mice were generated that showed stable PK for SYD985, comparable to that in monkeys and humans. Patient-derived xenograft (PDX) studies in these mice showed enhanced efficacy compared with PDX studies in CES1c+/+ mice and provided a more accurate prediction of clinical efficacy of SYD985, hence delivering better quality data. It seems reasonable to assume that CES1c-/- SCID mice can increase quality in ADC development much broader for all ADCs that carry linker-drugs susceptible to CES1c, without the need of chemically modifying the linker-drug to specifically increase PK in mice. Mol Cancer Ther; 17(11); 2389-98. ©2018 AACR.


Assuntos
Carboxilesterase/deficiência , Imunoconjugados/farmacologia , Imunoconjugados/farmacocinética , Animais , Carboxilesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Camundongos Knockout , Camundongos SCID , Peptídeos/química , Ratos Wistar , Trastuzumab/química , Resultado do Tratamento
7.
Asian J Androl ; 17(2): 292-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25475668

RESUMO

Despite the fact that the phenomenon of capacitation was discovered over half century ago and much progress has been made in identifying sperm events involved in capacitation, few specific molecules of epididymal origin have been identified as being directly involved in this process in vivo . Previously, our group cloned and characterized a carboxyl esterase gene Ces5a in the rat epididymis. The CES5A protein is mainly expressed in the corpus and cauda epididymidis and secreted into the corresponding lumens. Here, we report the function of CES5A in sperm maturation. By local injection of Lentivirus -mediated siRNA in the CES5A -expressing region of the rat epididymis, Ces5a -knockdown animal models were created. These animals exhibited an inhibited sperm capacitation and a reduction in male fertility. These results suggest that CES5A plays an important role in sperm maturation and male fertility.


Assuntos
Carboxilesterase/fisiologia , Epididimo/enzimologia , Fertilidade/fisiologia , Capacitação Espermática/fisiologia , Animais , Carboxilesterase/deficiência , Carboxilesterase/genética , Epididimo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , Modelos Animais , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Motilidade dos Espermatozoides/fisiologia
8.
Stem Cells Transl Med ; 2(12): 983-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24167321

RESUMO

CPT-11 (irinotecan) has been investigated as a treatment for malignant brain tumors. However, limitations of CPT-11 therapy include low levels of the drug entering brain tumor sites and systemic toxicities associated with higher doses. Neural stem cells (NSCs) offer a novel way to overcome these obstacles because of their inherent tumor tropism and ability to cross the blood-brain barrier, which enables them to selectively target brain tumor sites. Carboxylesterases (CEs) are enzymes that can convert the prodrug CPT-11 (irinotecan) to its active metabolite SN-38, a potent topoisomerase I inhibitor. We have adenovirally transduced an established clonal human NSC line (HB1.F3.CD) to express a rabbit carboxylesterase (rCE) or a modified human CE (hCE1m6), which are more effective at converting CPT-11 to SN-38 than endogenous human CE. We hypothesized that NSC-mediated CE/CPT-11 therapy would allow tumor-localized production of SN-38 and significantly increase the therapeutic efficacy of irinotecan. Here, we report that transduced NSCs transiently expressed high levels of active CE enzymes, retained their tumor-tropic properties, and mediated an increase in the cytotoxicity of CPT-11 toward glioma cells. CE-expressing NSCs (NSC.CEs), whether administered intracranially or intravenously, delivered CE to orthotopic human glioma xenografts in mice. NSC-delivered CE catalyzed conversion of CPT-11 to SN-38 locally at tumor sites. These studies demonstrate the feasibility of NSC-mediated delivery of CE to glioma and lay the foundation for translational studies of this therapeutic paradigm to improve clinical outcome and quality of life in patients with malignant brain tumors.


Assuntos
Neoplasias Encefálicas/terapia , Camptotecina/análogos & derivados , Hidrolases de Éster Carboxílico/metabolismo , Glioma/terapia , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/transplante , Inibidores da Topoisomerase I/farmacologia , Adenoviridae/genética , Animais , Biotransformação , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Camptotecina/farmacocinética , Camptotecina/farmacologia , Carboxilesterase/deficiência , Carboxilesterase/genética , Hidrolases de Éster Carboxílico/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Vetores Genéticos , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Irinotecano , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Neurais/efeitos dos fármacos , Coelhos , Fatores de Tempo , Distribuição Tecidual , Inibidores da Topoisomerase I/farmacocinética , Transdução Genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Chem Biol Interact ; 195(3): 189-98, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22209767

RESUMO

Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase. Symptoms of intoxication appear after approximately 50% of the acetylcholinesterase is inhibited. However, complete inhibition of carboxylesterase and butyrylcholinesterase has no known effect on an animal's well being. Paraoxonase hydrolyzes organophosphorus compounds and is not inhibited by them. Our goal was to determine the effect of plasma carboxylesterase deficiency on response to sublethal doses of 10 organophosphorus toxicants and one carbamate pesticide. Homozygous plasma carboxylesterase deficient ES1(-/-) mice and wild-type littermates were observed for toxic signs and changes in body temperature after treatment with a single sublethal dose of toxicant. Inhibition of plasma acetylcholinesterase, butyrylcholinesterase, and plasma carboxylesterase was measured. It was found that wild-type mice were protected from the toxicity of 12.5mg/kg parathion applied subcutaneously. However, both genotypes responded similarly to paraoxon, cresyl saligenin phosphate, diisopropylfluorophosphate, diazinon, dichlorvos, cyclosarin thiocholine, tabun thiocholine, and carbofuran. An unexpected result was the finding that transdermal application of chlorpyrifos at 100mg/kg and chlorpyrifos oxon at 14mg/kg was lethal to wild-type but not to ES1(-/-) mice, showing that with this organochlorine, the presence of carboxylesterase was harmful rather than protective. It was concluded that carboxylesterase in mouse plasma protects from high toxicity agents, but the amount of carboxylesterase in plasma is too low to protect from low toxicity compounds that require high doses to inhibit acetylcholinesterase.


Assuntos
Carboxilesterase/sangue , Carboxilesterase/deficiência , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Chem Res Toxicol ; 24(11): 1891-8, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21875074

RESUMO

The LD(50) for soman is 10-20-fold higher for a mouse than a human. The difference in susceptibility is attributed to the presence of carboxylesterase in mouse but not in human plasma. Our goal was to make a mouse lacking plasma carboxylesterase. We used homologous recombination to inactivate the carboxylesterase ES1 gene on mouse chromosome 8 by deleting exon 5 and by introducing a frame shift for amino acids translated from exons 6 to 13. ES1-/- mice have no detectable carboxylesterase activity in plasma but have normal carboxylesterase activity in tissues. Homozygous ES1-/- mice and wild-type littermates were tested for response to a nerve agent model compound (soman coumarin) at 3 mg/kg sc. This dose intoxicated both genotypes but was lethal only to ES1-/- mice. This demonstrated that plasma carboxylesterase protects against a relatively high toxicity organophosphorus compound. The ES1-/- mouse should be an appropriate model for testing highly toxic nerve agents and for evaluating protection strategies against the toxicity of nerve agents.


Assuntos
Carboxilesterase/genética , Inibidores da Colinesterase/efeitos adversos , Engenharia Genética/métodos , Camundongos Knockout/genética , Soman/efeitos adversos , Alelos , Animais , Cruzamento , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/deficiência , Substâncias para a Guerra Química/efeitos adversos , Inibidores da Colinesterase/administração & dosagem , Feminino , Genótipo , Recombinação Homóloga , Homozigoto , Humanos , Injeções Subcutâneas , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/sangue , Fenótipo , Soman/administração & dosagem , Soman/análogos & derivados
11.
FASEB J ; 25(4): 1370-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212359

RESUMO

Mechanisms to increase reverse cholesterol transport (RCT) and biliary sterol disposal are currently sought to prevent atherosclerosis. Previous work with HepG2 cells and primary hepatocytes showed that carboxyl ester lipase (CEL), a broad-spectrum lipase secreted by pancreas and liver, plays an important role in hydrolysis of high-density lipoprotein (HDL) cholesteryl esters (CEs) after selective uptake by hepatocytes. The effect of CEL on RCT of HDL cholesterol was assessed by measuring biliary and fecal disposal of radiolabeled HDL-CE in control and Cel(-/-) mice. Radiolabeled CE was increased 3-fold in hepatic bile of Cel(-/-) mice, and the mass of CE in gall bladder bile was elevated. Total radiolabeled transport from plasma to hepatic bile was more rapid in Cel(-/-) mice. Fecal disposal of radiolabel from HDL-CE, as well as total sterol mass, was markedly elevated for Cel(-/-) mice, primarily due to more CE. RCT of macrophage CE was also increased in Cel(-/-) mice, as measured by excretion of radiolabel from injected J774 cells. Increased sterol loss was compensated by increased cholesterol synthesis in Cel(-/-) mice. Together, the data demonstrate significantly increased RCT in the absence of CEL and suggest a novel mechanism by which to manipulate plasma cholesterol flux.


Assuntos
Bile/metabolismo , Carboxilesterase/deficiência , HDL-Colesterol/metabolismo , Colesterol/metabolismo , Animais , Transporte Biológico , Carboxilesterase/genética , Fezes/química , Masculino , Camundongos , Camundongos Knockout
13.
J Biol Chem ; 282(34): 24642-9, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17604277

RESUMO

This study evaluated the contributions of carboxyl ester lipase (CEL) and pancreatic triglyceride lipase (PTL) in lipid nutrient absorption. Results showed PTL deficiency has minimal effect on triacylglycerol (TAG) absorption under low fat dietary conditions. Interestingly, PTL(-)(/)(-) mice displayed significantly reduced TAG absorption compared with wild type mice under high fat/high cholesterol dietary conditions (80.1 +/- 3.7 versus 91.5 +/- 0.7%, p < 0.05). Net TAG absorption was reduced further to 61.1 +/- 3.8% in mice lacking both PTL and CEL. Cholesterol absorption was 41% lower in PTL(-/-) mice compared with control mice (p < 0.05), but this difference was not exaggerated in PTL(-/-), CEL(-/-) mice. Retinyl palmitate absorption was reduced by 45 and 60% in PTL(-/-) mice (p < 0.05) and PTL(-/-), CEL(-/-) mice (p < 0.01), respectively. After 15 weeks of feeding, the high fat/high cholesterol diet, wild type, and CEL(-/-) mice gained approximately 24 g of body weight. However, body weight gain was 6.2 and 8.6 g less (p < 0.01) in PTL(-/-) and PTL(-/-), CEL(-/-) mice, respectively, despite their consumption of comparable amounts of the high fat/high cholesterol diet. The decrease body weight gain in PTL(-/-) and PTL(-/-), CEL(-/-) mice was attributed to their absorption of fewer calories from the high fat/high cholesterol diet, thereby resulting in less fat mass accumulation than that observed in wild type and CEL(-/-) mice. Thus, this study documents that PTL and CEL serve complementary functions, working together to mediate the absorption of a major portion of dietary fat and fat-soluble vitamin esters. The reduced lipid absorption efficiency due to PTL and CEL inactivation also resulted in protection against diet-induced obesity.


Assuntos
Carboxilesterase/deficiência , Carboxilesterase/genética , Lipase/genética , Lipídeos/química , Pâncreas/enzimologia , Absorção , Ração Animal , Animais , Composição Corporal , Regulação da Expressão Gênica , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Triglicerídeos/metabolismo
14.
J Biol Chem ; 279(26): 27599-606, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15105424

RESUMO

Cholesteryl esters are selectively removed from high density lipoproteins by hepatocytes and steroidogenic cells through a process mediated by scavenger receptor BI. In the liver this cholesterol is secreted into bile, primarily as free cholesterol. Previous work showed that carboxyl ester lipase enhanced selective uptake of cholesteryl ether from high density lipoprotein by an unknown mechanism. Experiments were performed to determine whether carboxyl ester lipase plays a role in scavenger receptor BI-mediated selective uptake. When added to cultures of HepG2 cells, carboxyl ester lipase cofractionated with scavenger receptor BI and [(3)H]cholesteryl ether-labeled high density lipoprotein in lipid raft fractions of cell homogenates. Confocal microscopy of immunostained carboxyl ester lipase and scavenger receptor BI showed a close association of these proteins in HepG2 cells. The enzyme and receptor also cofractionated from homogenates of mouse liver using two different fractionation methods. Antibodies that block scavenger receptor BI function prevented carboxyl ester lipase stimulation of selective uptake in primary hepatocytes from carboxyl ester lipase knockout mice. Heparin blockage of cell-surface proteoglycans also prevented carboxyl ester lipase stimulation of cholesteryl ester uptake by HepG2 cells. Inhibition of carboxyl ester lipase activity in HepG2 cells reduced hydrolysis of high density lipoprotein-cholesteryl esters approximately 40%. In vivo, hydrolysis was similarly reduced in lipid rafts from the livers of carboxyl ester lipase-null mice compared with control animals. Primary hepatocytes from these mice yielded similar results. The data suggest that carboxyl ester lipase plays a physiological role in hepatic selective uptake and metabolism of high density lipoprotein cholesteryl esters by direct and indirect interactions with the scavenger receptor BI pathway.


Assuntos
Carboxilesterase/metabolismo , Carboxilesterase/farmacologia , Ésteres do Colesterol/metabolismo , Hepatócitos/metabolismo , Microdomínios da Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Carboxilesterase/deficiência , Carboxilesterase/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Fracionamento Químico , Endossomos/metabolismo , Heparina/farmacologia , Hepatócitos/química , Hepatócitos/citologia , Humanos , Hidrólise , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Fígado/ultraestrutura , Camundongos , Camundongos Knockout , Receptores Depuradores , Ácido Taurocólico/farmacologia , Ácido Taurodesoxicólico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA