Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
1.
Front Immunol ; 15: 1327372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736889

RESUMO

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Linfócitos B , Cardiomiopatia Dilatada , Miocárdio , Humanos , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Masculino , Feminino , Comunicação Celular/imunologia , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Adulto , Transcriptoma , Regulação da Expressão Gênica
2.
Nature ; 608(7921): 181-191, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732239

RESUMO

The heart, the first organ to develop in the embryo, undergoes complex morphogenesis that when defective results in congenital heart disease (CHD). With current therapies, more than 90% of patients with CHD survive into adulthood, but many suffer premature death from heart failure and non-cardiac causes1. Here, to gain insight into this disease progression, we performed single-nucleus RNA sequencing on 157,273 nuclei from control hearts and hearts from patients with CHD, including those with hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot, two common forms of cyanotic CHD lesions, as well as dilated and hypertrophic cardiomyopathies. We observed CHD-specific cell states in cardiomyocytes, which showed evidence of insulin resistance and increased expression of genes associated with FOXO signalling and CRIM1. Cardiac fibroblasts in HLHS were enriched in a low-Hippo and high-YAP cell state characteristic of activated cardiac fibroblasts. Imaging mass cytometry uncovered a spatially resolved perivascular microenvironment consistent with an immunodeficient state in CHD. Peripheral immune cell profiling suggested deficient monocytic immunity in CHD, in agreement with the predilection in CHD to infection and cancer2. Our comprehensive phenotyping of CHD provides a roadmap towards future personalized treatments for CHD.


Assuntos
Cardiopatias Congênitas , Fenótipo , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/imunologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/patologia , Fatores de Transcrição Forkhead/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/imunologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/imunologia , Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Síndrome do Coração Esquerdo Hipoplásico/patologia , Citometria por Imagem , Resistência à Insulina , Monócitos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única , Tetralogia de Fallot/genética , Tetralogia de Fallot/imunologia , Tetralogia de Fallot/metabolismo , Tetralogia de Fallot/patologia , Proteínas de Sinalização YAP/metabolismo
3.
Ther Apher Dial ; 26(1): 229-241, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33914397

RESUMO

Immunoadsorption is well known to selectively remove immunoglobulins and immune complexes from plasma and is applied in a variety of autoimmune diseases and for desensitization before, or at acute rejection after organ transplantation. Performance, safety, and clinical effectiveness of immunoadsorption were the aim of this study. This prospective, noninterventional, multicentre cohort study included patients treated with immunoadsorption (Immunosorba or GLOBAFFIN adsorbers) for any indication. Clinical effectiveness was assessed after termination of the patient's individual treatment schedule. Eighty-one patients were included, 69 were treated with Immunosorba, 11 with GLOBAFFIN, one patient with both adsorbers. A majority of patients was treated for neurological indications, dilated cardiomyopathy, and before or after kidney or heart transplantation. Mean IgG reduction from pre- to post-treatment was 69.9% ± 11.5% for Immunosorba and 74.1% ± 5.0% for GLOBAFFIN, respectively. The overall IgG reduction over a complete treatment block was 68%-93% with Immunosorba and 62%-90% with GLOBAFFIN depending on the duration of the overall treatment. After termination of the immunoadsorption therapy, an improvement of clinical status was observed in 63.0%, stabilization of symptoms in 29.6%, and a deterioration in 4.9% of patients. Changes in fibrinogen, thrombocytes, and albumin were mostly classified as noncritical. Overall, the treatments were well tolerated. Immunoadsorption in routine clinical practice with both GLOBAFFIN and Immunosorba has been safely performed, was well tolerated by patients, and effective in lowering immunoglobulins with an improvement or maintenance of clinical status, thus represents an additional therapeutic option for therapy refractory immune disorders.


Assuntos
Doenças Autoimunes/terapia , Cardiomiopatia Dilatada/terapia , Técnicas de Imunoadsorção , Doenças do Sistema Nervoso/terapia , Cuidados Pós-Operatórios/métodos , Cuidados Pré-Operatórios/métodos , Doenças Autoimunes/imunologia , Cardiomiopatia Dilatada/imunologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/imunologia , Estudos Prospectivos , Transplantados/estatística & dados numéricos , Resultado do Tratamento
4.
J Clin Pathol ; 75(1): 30-33, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33785545

RESUMO

AIMS: So far, little has been known on whether myocardial inflammatory infiltration influences heart failure (HF) progression. Thus, the aim of this study was to test the impact of intramyocardial infiltration on clinical outcomes. METHODS: Biopsy samples from 358 patients with stable HF secondary to dilated cardiomyopathy were studied. Immunohistochemistry for lymphocyte (CD3) and macrophage (CD68) markers was performed and counted. After a 1-year follow-up, patients were classified as improved based on the predefined definition of improvement. The clinical data were collected from 324 patients (90.5%). RESULTS: According to the predefined definition of improvement, 133 patients improved (41.0%) but 191 remained unchanged or deteriorated (58.9%). After a 12-month follow-up, the OR with 95% CI of counts of myocardial inflammatory CD68-positive ≥4 cell/high power field (HPF) compared with CD68-positive <4 cell/HPF for lack of improvement was 1.91 (1.65-2.54). However, the number of CD3 positive cell infiltration had no impact on clinical outcome after a 1-year follow-up. In the baseline study, a reasonably negative correlation was found between the number of CD68 positive cells and troponin T (r=-0.39; p<0.001 by Spearman's r). This was corroborated with a low negative correlation between these cells and myocardial form of creatine kinase (CK-MB) fraction (r=-0.27; p=0.006). There was no correlation between CD3 and CD68 positive cells (Spearman's r; r=-0.17, p=0.16). CONCLUSIONS: The current results provide evidence that high macrophage counts may be a predisposing factor for HF progression.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , Doenças Cardiovasculares/diagnóstico , Insuficiência Cardíaca/diagnóstico , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Biópsia , Complexo CD3/metabolismo , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Feminino , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/patologia , Humanos , Imuno-Histoquímica , Inflamação , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/imunologia , Miocárdio/patologia , Prognóstico
5.
Cardiovasc Res ; 117(13): 2610-2623, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34609508

RESUMO

Infection of the heart muscle with cardiotropic viruses is one of the major aetiologies of myocarditis and acute and chronic inflammatory cardiomyopathy (DCMi). However, viral myocarditis and subsequent dilated cardiomyopathy is still a challenging disease to diagnose and to treat and is therefore a significant public health issue globally. Advances in clinical examination and thorough molecular genetic analysis of intramyocardial viruses and their activation status have incrementally improved our understanding of molecular pathogenesis and pathophysiology of viral infections of the heart muscle. To date, several cardiotropic viruses have been implicated as causes of myocarditis and DCMi. These include, among others, classical cardiotropic enteroviruses (Coxsackieviruses B), the most commonly detected parvovirus B19, and human herpes virus 6. A newcomer is the respiratory virus that has triggered the worst pandemic in a century, SARS-CoV-2, whose involvement and impact in viral cardiovascular disease is under scrutiny. Despite extensive research into the pathomechanisms of viral infections of the cardiovascular system, our knowledge regarding their treatment and management is still incomplete. Accordingly, in this review, we aim to explore and summarize the current knowledge and available evidence on viral infections of the heart. We focus on diagnostics, clinical relevance and cardiovascular consequences, pathophysiology, and current and novel treatment strategies.


Assuntos
COVID-19/virologia , Cardiomiopatia Dilatada/virologia , Miocardite/virologia , Infecções por Parvoviridae/virologia , Parvovirus B19 Humano/patogenicidade , SARS-CoV-2/patogenicidade , Animais , Antivirais/uso terapêutico , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/terapia , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/terapia , Terapia Genética , Interações Hospedeiro-Patógeno , Humanos , Miocardite/diagnóstico , Miocardite/imunologia , Miocardite/terapia , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/terapia , Parvovirus B19 Humano/imunologia , SARS-CoV-2/imunologia , Tratamento Farmacológico da COVID-19
6.
BMC Cardiovasc Disord ; 21(1): 88, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579193

RESUMO

BACKGROUND: Necrotizing autoimmune myopathy (NAM) is pathologically characterized by myofiber necrosis and regeneration with paucity or absence of inflammatory cells in muscle biopsy. Two autoantibodies, namely anti-signal recognition particle (SRP)-antibodies and anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)-antibodies, are typically specific with NAM. Anti-SRP-positive NAM can be associated with cardiomyopathy which responds well to immunotherapy. Here we reported an anti-SRP-antibody and anti-MDA5-antibody NAM patient who developed severe cardiomyopathy after gaining significant improvement of myopathy and subsequently accepted heart transplantation. CASE PRESENTATION: A NAM case with both positive anti-SRP and MDA-5 antibodies who gained significant improvement of the skeletal muscle weakness with immunotherapy, but 3 years later he developed severe dilated cardiomyopathy and at last received heart transplantation. Myocardial biopsy showed disarranged and atrophic myofibers, remarkable interstitial fibrosis without inflammatory infiltrates. Immunohistochemistry analysis revealed increased polyubiquitin-binding protein p62/SQSTM1 protein expression and the positive staining of cleaved-caspase 3 in a few cardiomyocytes. After the transplantation, the patient was symptom-free on oral prednisone (10 mg/day) and tacrolimus (2 mg/day). CONCLUSIONS: We described the first case of anti-SRP and anti-MAD5 positive NAM who had received heart transplantation because of cardiopathy. Though the myopathy had been clinically improved after immunotherapy, the cardiomyopathy remained progressive and lethal. The processes of dysfunctional autophagy and augmented apoptosis were putatively pathophysiological mechanisms underlying cardiac damage in anti-SRP and anti-MAD5 positive NAM.


Assuntos
Autoanticorpos/sangue , Doenças Autoimunes/tratamento farmacológico , Cardiomiopatia Dilatada/terapia , Imunossupressores/uso terapêutico , Helicase IFIH1 Induzida por Interferon/imunologia , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Partícula de Reconhecimento de Sinal/imunologia , Adulto , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Biomarcadores/sangue , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/imunologia , Feminino , Transplante de Coração , Humanos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Doenças Musculares/sangue , Doenças Musculares/diagnóstico , Doenças Musculares/imunologia , Necrose , Fatores de Tempo , Resultado do Tratamento
7.
Basic Res Cardiol ; 116(1): 1, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432417

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) has a cardioprotective function in mice by repressing cardiac fibrosis through TGF-ß and plasminogen-mediated pathways. In addition it is known to be involved in the recruitment and polarization of monocytes/macrophages towards a M2 phenotype in cancer. Here, we investigated the expression of PAI-1 in human dilated cardiomyopathy (DCM) and inflammatory dilated cardiomyopathy (DCMi) and its effect on cardiac fibrosis and macrophage polarization. We retrospectively analyzed endomyocardial biopsies (EMBs) of patients with DCM or DCMi for PAI-1 expression by immunohistochemistry. Furthermore, EMBs were evaluated for the content of fibrotic tissue, number of activated myofibroblasts, TGF-ß expression, as well as for M1 and M2 macrophages. Patients with high-grade DCMi (DCMi-high, CD3+ lymphocytes > 30 cells/mm2) had significantly increased PAI-1 levels compared to DCM and low-grade DCMi patients (DCMi-low, CD3+ lymphocytes = 14-30 cells/mm2) (15.5 ± 0.4% vs. 1.0 ± 0.1% and 4.0 ± 0.1%, p ≤ 0.001). Elevated PAI-1 expression in DCMi-high subjects was associated with a diminished degree of cardiac fibrosis, decreased levels of TGF-ß and reduced number of myofibroblasts. In addition, DCMi-high patients revealed an increased proportion of non-classical M2 macrophages towards classical M1 macrophages, indicating M2 macrophage-favoring properties of PAI-1 in inflammatory cardiomyopathies. Our findings give evidence that elevated expression of cardiac PAI-1 in subjects with high-grade DCMi suppresses fibrosis by inhibiting TGF-ß and myofibroblast activation. Moreover, our data indicate that PAI-1 is involved in the polarization of M2 macrophages in the heart. Thus, PAI-1 could serve as a potential prognostic biomarker and as a possible therapeutic target in inflammatory cardiomyopathies.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Diferenciação Celular , Macrófagos/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Adulto , Idoso , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Feminino , Fibrose , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/imunologia , Miocárdio/patologia , Miofibroblastos/imunologia , Miofibroblastos/patologia , Fenótipo , Estudos Retrospectivos , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
8.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466825

RESUMO

Dilated cardiomyopathy (DCM) is a potentially lethal disorder characterized by progressive impairment of cardiac function. Chronic myocarditis has long been hypothesized to be one of the causes of DCM. However, owing to the lack of suitable animal models of chronic myocarditis, its pathophysiology remains unclear. Here, we report a novel mouse model of chronic myocarditis induced by recombinant bacille Calmette-Guérin (rBCG) expressing a CD4+ T-cell epitope of cardiac myosin heavy chain-α (rBCG-MyHCα). Mice immunized with rBCG-MyHCα developed chronic myocarditis, and echocardiography revealed dilation and impaired contraction of ventricles, similar to those observed in human DCM. In the heart, CD62L-CD4+ T cells were increased and produced significant amounts of IFN-γ and IL-17 in response to cardiac myosin. Adoptive transfer of CD62L-CD4+ T cells induced myocarditis in the recipient mice, which indicated that CD62L-CD4+ T cells were the effector cells in this model. rBCG-MyHCα-infected dendritic cells produced proinflammatory cytokines and induced MyHCα-specific T-cell proliferation and Th1 and Th17 polarization. This novel chronic myocarditis mouse model may allow the identification of the central pathophysiological and immunological processes involved in the progression to DCM.


Assuntos
Vacina BCG/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Miocardite/imunologia , Miosinas Ventriculares/imunologia , Animais , Vacina BCG/genética , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Doença Crônica , Citocinas/imunologia , Citocinas/metabolismo , Ecocardiografia , Epitopos de Linfócito T/genética , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Miocardite/patologia , Miocardite/fisiopatologia , Proteínas Recombinantes/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Miosinas Ventriculares/genética
9.
Science ; 366(6467): 881-886, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727837

RESUMO

Myocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (TH)1 and TH17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific TH17 cells imprinted in the intestine by a commensal Bacteroides species peptide mimic. Both the successful prevention of lethal disease in mice by antibiotic therapy and the significantly elevated Bacteroides-specific CD4+ T cell and B cell responses observed in human myocarditis patients suggest that mimic peptides from commensal bacteria can promote inflammatory cardiomyopathy in genetically susceptible individuals. The ability to restrain cardiotoxic T cells through manipulation of the microbiome thereby transforms inflammatory cardiomyopathy into a targetable disease.


Assuntos
Doenças Autoimunes/complicações , Bacteroides/imunologia , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/microbiologia , Microbioma Gastrointestinal/imunologia , Miocardite/complicações , Peptídeos/imunologia , beta-Galactosidase/imunologia , Animais , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Humanos , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Miocardite/imunologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/imunologia , Células Th17/imunologia
10.
J Appl Lab Med ; 4(3): 391-403, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659076

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a common cause of heart failure with high morbidity and mortality rates. The association of anti-ß1 adrenergic receptor (ß1AR) autoantibodies with disease progression was shown by various studies and in vivo animal experiments. The prevalence of these disease-driving autoantibodies was estimated as 25% to 75% in DCM. The removal of autoantibodies or the interruption of their action leads to a prolonged improvement of heart function. However, presence and impact of the autoimmune aspect in DCM patients must be examined for targeted treatment. METHODS: We developed a heterogeneous immunoassay to support the diagnosis of anti-ß1AR autoantibody-induced DCM. The presentation of the native conformational epitope was enabled by reconstitution of human ß1AR into lipid bilayer nanodiscs, which stabilize the incorporated receptor in aqueous solution for measurements with standard immunological techniques. RESULTS: The incorporation of ß1AR into nanodiscs was verified by chromatographic, spectroscopic, and immunological methods. The functionality was shown by interaction assays with appropriate binding partners. Furthermore, ß1AR nanodiscs were applied to immunoassays for the detection of anti-ß1AR in human sera. Surface plasmon resonance spectroscopy and ELISA were developed, optimized, and validated. The optimized ß1AR nanodisc ELISA enabled a simultaneous measurement of 40 samples in duplicate. An interassay variance of 24% and an intraassay variance of 5% were determined. The limit of detection and the limit of quantification were determined as 0.64 ng/mL and 1.26 ng/mL, respectively (related to a monoclonal anti-ß1AR). CONCLUSIONS: Nanodisc technology is suitable as a novel biomimetic membrane system to stabilize and present ß1AR for detection of autoantibodies with immunological methods in DCM patients.


Assuntos
Autoanticorpos/sangue , Autoantígenos , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/diagnóstico , Imunoensaio/métodos , Receptores Adrenérgicos beta 1 , Adulto , Autoanticorpos/imunologia , Autoantígenos/imunologia , Cardiomiopatia Dilatada/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Feminino , Imunofluorescência , Genes Reporter , Humanos , Masculino , Nanotecnologia , Receptores Adrenérgicos beta 1/imunologia , Sensibilidade e Especificidade
11.
J Mol Cell Cardiol ; 135: 134-148, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398346

RESUMO

Cellular autoimmune responses, especially those mediated by T-cells, play vital roles in the immunopathogenesis of dilated cardiomyopathy (DCM). Metabolic reprogramming directly controls T-cell function, imprinting distinct functional fates. However, its contribution to T-cell dysfunction and the immunopathogenesis of DCM is unknown. Here, we found that in DCM patients, CD4+ T-cells exhibited immune dysfunction and glycolytic metabolic reprogramming based on extracellular acidification and oxygen consumption rates. Similar results were observed in splenic and cardiac CD4+ T-cells from autoimmune-induced DCM mice. In vitro, the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed T-cell dysfunction; thus, heightened metabolic activity directly controls CD4+ T-cell immunological status. Adoptive transfer of CD4+ T-cells from DCM mice to normal recipients induced cardiac remodeling and cardiac T-cell dysfunction. Strikingly, these effects were abolished by preconditioning cells with 2-DG, indicating that CD4+ T-cell dysfunction partially induced by metabolic reprogramming contributes to cardiac remodeling. Moreover, the microRNA let-7i modulated the metabolism and function of T-cells from DCM mice by directly targeting Myc. Collectively, our results show that metabolic reprogramming occurs in T-cells of autoimmune-induced DCM mice and patients. Further, our findings highlight that glycolytic metabolism is a critical contributor to T-cell dysfunction and DCM immunopathogenesis. Our data position the modulation of the metabolism as a central integrator for T-cell function, representing a promising strategy against autoimmune-mediated DCM progression.


Assuntos
Autoimunidade/imunologia , Cardiomiopatia Dilatada/imunologia , Reprogramação Celular/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Cardiomiopatia Dilatada/patologia , Reprogramação Celular/genética , Modelos Animais de Doenças , Humanos , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Linfócitos T/patologia
12.
PLoS One ; 14(7): e0214263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276517

RESUMO

BACKGROUND: Autoimmunity associated with autoantibodies against the ß1-adrenergic receptor (ß1-AAB) is increasingly accepted as the driver of human dilated cardiomyopathy (DCM). Unfortunately, there is a lack of animal models to extend the knowledge about ß1-AAB autoimmunity in DCM and to develop appropriate treatment strategies. OBJECTIVES: To introduce an animal model, we investigated the ß1-AAB associated autoimmunity in Doberman Pinscher (DP) with dilated cardiomyopathy, which has similarities to human DCM. MATERIALS AND METHODS: Eighty-seven DP with cardiomyopathy in terms of pathological ECG and echocardiography (DoCM) and 31 dogs (at enrollment) without DoCM (controls) were analyzed for serum activity of ß1-AAB with a bioassay that records the chronotropic response of spontaneously beating cultured neonatal rat cardiomyocytes to the DP's IgG. To locate the receptor binding site of ß1-AAB and the autoantibody's sensitivity to inhibition, competing experiments with related blockers were performed with the bioassay. In controls that developed DoCM during follow-up, ß1-AAB were analyzed during progress. RESULTS: Fifty-nine (67.8%) DoCM dogs and 19 (61.3%) controls were ß1-AAB positive. Of the controls that developed DoCM, 8 were ß1-AAB positive (p = 0.044 vs. dogs remaining in the control group); their ß1-AAB activity increased with the cardiomyopathy progress (p<0.02). To supplement DoCM group with the 9 animals which developed cardiomyopathy in the follow up, a more pronounced ß1-AAB positivity became visible in the DoCM group (p = 0.066). Total and cardiac mortality were higher in ß1-AAB positive DP (p = 0.002; p = 0037). The dogs' ß1-AAB recognized a specific epitope on the second extracellular receptor and were sensitive to inhibition by drugs already successfully tested to inhibit the corresponding human autoantibody. CONCLUSIONS: Doberman Pinschers presented ß1-AAB associated autoimmunity, similar as in the pathogenesis of human DCM. Consequently, DP could compensate the lack of animal models for the investigation of ß1-AAB autoimmunity in human DCM.


Assuntos
Autoanticorpos/imunologia , Autoimunidade , Cardiomiopatia Dilatada/imunologia , Doenças do Cão/imunologia , Receptores Adrenérgicos beta 1/imunologia , Animais , Cardiomiopatia Dilatada/veterinária , Modelos Animais de Doenças , Cães , Feminino , Humanos , Masculino
13.
Am J Physiol Heart Circ Physiol ; 317(2): H405-H414, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199184

RESUMO

Hypereosinophilic syndrome is characterized by sustained and marked eosinophilia leading to tissue damage and organ dysfunction. Morbidity and mortality occur primarily due to cardiac and thromboembolic complications. Understanding the cause and mechanism of disease would aid in the development of targeted therapies with greater efficacy and fewer side effects. We discovered a spontaneous mouse mutant in our colony with a hypereosinophilic phenotype. Mice develop peripheral blood eosinophilia; infiltration of lungs, spleen, and heart by eosinophils; and extensive myocardial damage and remodeling. This ultimately leads to heart failure and premature death. Histopathological assessment of the hearts revealed a robust inflammatory infiltrate composed primarily of eosinophils and B-lymphocytes, associated with myocardial damage and replacement fibrosis, consistent with eosinophilic myocarditis. In many cases, hearts showed dilatation and thinning of the right ventricular wall, suggestive of an inflammatory dilated cardiomyopathy. Most mice showed atrial thrombi, which often filled the chamber. Protein expression analysis revealed overexpression of chemokines and cytokines involved in innate and adaptive immunity including IL-4, eotaxin, and RANTES. Disease could be transferred to wild-type mice by adoptive transfer of splenocytes from affected mice, suggesting a role for the immune system. In summary, the pathologies observed in the mutant lines are reminiscent of those seen in patients with hypereosinophilia, where cardiac-related morbidities, like congestive heart failure and thrombi, are the most common causes of death. As such, our model provides an opportunity to test mechanistic hypotheses and develop targeted therapies.NEW & NOTEWORTHY This article describes a new model of heart disease in hypereosinophilia. The model developed as a spontaneous mouse mutant in the colony and is characterized by peripheral blood eosinophilia and infiltration of lungs, spleen, and heart by eosinophils. In the heart, there is extensive myocardial damage, remodeling, fibrosis, and thrombosis, leading to heart failure and death. The immune microenvironment is one of increased innate and adaptive immunity, including Th1 and Th2 cytokines/chemokines. Finally, adoptive transfer of splenocytes transfers disease to recipient mice. In summary, this model provides an opportunity to test mechanistic hypotheses and develop targeted therapies for this rare but devastating disease.


Assuntos
Cardiomiopatia Dilatada/etiologia , Insuficiência Cardíaca/etiologia , Síndrome Hipereosinofílica/complicações , Miocardite/etiologia , Miocárdio , Imunidade Adaptativa , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Eosinófilos/imunologia , Eosinófilos/metabolismo , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Síndrome Hipereosinofílica/imunologia , Síndrome Hipereosinofílica/metabolismo , Síndrome Hipereosinofílica/patologia , Imunidade Inata , Camundongos Mutantes , Miocardite/imunologia , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Transdução de Sinais , Fatores de Tempo , Remodelação Ventricular
14.
Cytokine ; 116: 139-149, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716658

RESUMO

BACKGROUND: Adiponectin is a hormone that together with its receptors modulates a number of metabolic processes including gluconeogenesis and lipid catabolism. It belongs to the C1QTNF (complement C1q tumor necrosis factor-related protein) family, which has a variety of members with high amino acid sequence homology and overlapping functions. Concentration of adiponectin in blood is inversely correlated with body fat percentage and cardiac risk factors like blood pressure and CRP (C-reactive protein) level. Studies have identified the existence of a cardiac adiponectin system. However, little is known about the role of this system in the pathogenesis of autoimmune myocarditis. Thus, we have studied the involvement of adiponectin in the development of this autoimmune disorder in a mouse model of experimental autoimmune myocarditis (EAM). METHODS: Adiponectin knockout (ko) and wild type (wt) mice were immunized with cardiac troponin I (cTnI) to induce an EAM. To determine the severity of myocardial damage, inflammation and fibrosis were scored after HE and Afog staining and high sensitivity troponin T (hsTnT) level was measured. To detect if changes in specific inflammatory cell numbers could be observed between the genotypes, we performed immunohistochemical staining to detect T lymphocytes, B lymphocytes and macrophages. The level of the humoral immune response was determined through the measurement of cTnI-specific serum IgG autoantibodies. Relative mRNA expression of different cytokines, C1QTNF family members and adiponectin receptors in the heart tissue was analyzed with qPCR. RESULTS: Animals immunized with cTnI developed autoimmune myocarditis with a significant deterioration of cardiac parameters compared to the corresponding control group. The adiponectin ko group immunized with cTnI showed a tendency towards increased inflammation, fibrosis, heart-to-body-weight ratio, infiltration pattern of T lymphocytes, B lymphocytes and macrophages, hsTnT concentration, humoral immune response and mRNA expression of interleukin 6 in the heart tissue and decreased weight gain compared to the wt group immunized with cTnI. However, the difference to the wt group treated with cTnI was not significant. The analysis of cardiac mRNA expression of adiponectin receptors and four C1QTNF family members, most suitable for fulfilling the functions of adiponectin in adiponectin ko mice, did not show any significant differences between adiponectin ko and wt group at all. CONCLUSION: Our study reveals that the absence of adiponectin did not lead to a significantly increased impairment of cardiac function and was also unlikely to be compensated by its receptors or other C1QTNF family members in the murine model of EAM. Here, other synergistic or redundant effects might play a role and must be investigated in further studies to understand the role and function of adiponectin in autoimmune myocarditis.


Assuntos
Adiponectina/genética , Doenças Autoimunes/genética , Cardiomiopatia Dilatada/genética , Miocardite/genética , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Cardiomiopatia Dilatada/imunologia , Citocinas/análise , Citocinas/genética , Modelos Animais de Doenças , Coração/fisiologia , Inflamação/patologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Miocardite/imunologia , Linfócitos T/imunologia , Troponina I/sangue
15.
Front Biosci (Elite Ed) ; 11(1): 102-108, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468641

RESUMO

Autoantibodies to beta-1 adrenergic receptor have been reported in adult patients with dilated cardiomyopathy (DCM). Removal of these antibodies has a positive hemodynamic effect. Our aim was to investigate whether these antibodies are present in children with DCM and explore the potential hemodynamic benefit of immunoadsorption (IA). Seventeen children with DCM  were tested for these antibodies. The etiology of DCM was genetic (n=5), myocarditis (n=4), DCM and congenital heart block (n=3), DCM associated to maternal lupus (n=1), DCM and Wolff Parkinson White Syndrome (n=1), and idiopathic (n=3). All patients evidenced ventricular dysfunction. Antibody testing was positive in 8 patients, 7  received IA.  Three patients with high titers had a poor clinical outcome and needed transplantation. Two patients with low titers exhibited a full recovery of heart function. One patient with multiple myocarditis episodes was treated with immunoglobulin IgG and IA ; after 5 years this patient presented a LVEF of 40 percent. Beta-1 adrenergic receptors autoantibodies are present in children with DCM. Immunoadsorption therapy may help improve heart failure in this context.


Assuntos
Autoanticorpos/imunologia , Cardiomiopatia Dilatada/imunologia , Hemodinâmica/genética , Receptores Adrenérgicos/imunologia , Cardiomiopatia Dilatada/terapia , Pré-Escolar , Humanos , Técnicas de Imunoadsorção , Lactente , Recém-Nascido , Resultado do Tratamento
16.
Front Immunol ; 9: 2714, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524444

RESUMO

Autoimmune myocarditis often leads to dilated cardiomyopathy (DCM). Although T cell reactivity to cardiac self-antigen is common in the disease, it is unknown which antigen presenting cell (APC) triggers autoimmunity. Experimental autoimmune myocarditis (EAM) was induced by immunizing mice with α-myosin loaded bone marrow APCs cultured in GM-CSF. APCs found in such cultures include conventional type 2 CD11b+ cDCs (GM-cDC2s) and monocyte-derived cells (GM-MCs). However, only α-myosin loaded GM-cDC2s could induce EAM. We also studied antigen presenting capacity of endogenous type 1 CD24+ cDCs (cDC1s), cDC2s, and MCs for α-myosin-specific TCR-transgenic TCR-M CD4+ T cells. After EAM induction, all cardiac APCs significantly increased and cDCs migrated to the heart-draining mediastinal lymph node (LN). Primarily cDC2s presented α-myosin to TCR-M cells and induced Th1/Th17 differentiation. Loss of IRF4 in Irf4fl/fl.Cd11cCre mice reduced MHCII expression on GM-cDC2s in vitro and cDC2 migration in vivo. However, partly defective cDC2 functions in Irf4fl/fl.Cd11cCre mice did not suppress EAM. MCs were the largest APC subset in the inflamed heart and produced pro-inflammatory cytokines. Targeting APC populations could be exploited in the design of new therapies for cardiac autoimmunity.


Assuntos
Apresentação de Antígeno , Autoantígenos , Doenças Autoimunes , Células Dendríticas/imunologia , Monócitos/imunologia , Miocardite , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Dendríticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Monócitos/patologia , Miocardite/genética , Miocardite/imunologia , Miocardite/patologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
17.
Medicine (Baltimore) ; 97(50): e13386, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30557992

RESUMO

OBJECTIVE: Several published studies have investigated the association between the -308G/A (rs1800629) polymorphism in the tumor necrosis factor-α (TNF-α) gene and the risk of dilated cardiomyopathy (DCM). However, the TNF-α gene polymorphism has a controversial role in the pathogenesis of DCM among different populations. In the present study, a meta-analysis was performed to resolve this inconsistency. METHODS: Potentially eligible papers reporting an association between the TNF-α rs1800629 polymorphism and DCM susceptibility were searched in 4 databases including PubMed, EMBASE, Chinese Biomedical Database (CBM), and the Cochrane Library up to April 1, 2018. The odds ratio (OR) with its 95% confidence interval (CI) was used to estimate the strength of the associations. Subgroup analysis based on the ethnicity, studies with or without ischemic and valvular DCM was conducted. Publication bias detection was conducted using Begg test. RESULTS: Nine papers detailing case-control studies were included, reporting a total of 1339 DCM cases and 1677 healthy controls. The meta-analysis results indicated that TNF-α rs1800629 was associated with increased DCM susceptibility in the populations studied under the heterozygous model (AG vs GG: OR = 1.91, 95% CI = 1.05-3.50, P = .035) and dominant model (AG + AA vs GG: OR = 1.87, 95% CI = 1.01-3.45, P = .046). In the subgroup analysis for ethnicity, rs1800629 polymorphism was significantly associated with the susceptibility of DCM for Asians under the 5 models (A vs G: OR = 2.87, 95% CI = 1.56-5.30, P = .001; AA vs GG: OR = 3.95, 95% CI = 1.13-13.82, P = 0.031; AG vs GG: OR = 3.8, 95% CI = 1.57-9.19, P = .003; AA vs GG + AG: OR = 2.51, 95% CI = 1.41-4.49, P = .002; AG + AA vs GG: OR = 3.77, 95% CI = 1.54-9.20, P = .004). CONCLUSION: There may be a moderate association between TNF-α rs1800629 polymorphism and DCM susceptibility in the whole populations studied; however, TNF-α rs1800629 polymorphism was significantly associated with the susceptibility of DCM for Asians, which indicates that such associations may be different between ethnicities.


Assuntos
Cardiomiopatia Dilatada/genética , Polimorfismo Genético/genética , Fator de Necrose Tumoral alfa/análise , Cardiomiopatia Dilatada/imunologia , Estudos de Casos e Controles , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Razão de Chances , Fator de Necrose Tumoral alfa/genética
18.
Autoimmunity ; 51(5): 245-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30424681

RESUMO

Autoantibodies against the M2 subtype of muscarinic acetylcholine receptors with functional activities have been found in the sera of patients with dilated cardiomyopathy (DCM), and the second extracellular loop has been established as the predominant epitope. However, it has been shown that the third intracellular loop is recognized by Chagas disease patients with severe cardiac dysfunction. In this work, BALB/c mice were immunized with plasmids encoding these two epitopes, and a control group received the empty plasmid (pcDNA3 vector). Serum from these DNA-immunized animals had elevated and persistent titres of antibodies against respective antigens. Heart echocardiography indicated diminished left ventricular wall thickness and reduced ejection fraction for both epitope-immunized groups, and ergospirometry tests showed a significant decrease in the exercise time and oxygen consumption. Transfer of serum from these immunized mice into naïve recipients induced the same alterations in cardiac structure and function. Furthermore, electron microscopy analysis of donor-immunized animals revealed several ultrastructural alterations suggestive of autophagy and mitophagy, suggesting novel roles for these autoantibodies. Overall, greater functional and structural impairment was observed in the donor and recipient epitope groups, implicating the third intracellular loop epitope in the pathological effects for the first-time. Therefore, the corresponding peptides could be useful for autoimmune DCM diagnosis and targeted therapy.


Assuntos
Autoanticorpos , Autofagia/imunologia , Cardiomiopatia Dilatada/imunologia , Miocárdio/imunologia , Receptor Muscarínico M2/imunologia , Animais , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Miocárdio/patologia , Miocárdio/ultraestrutura , Peptídeos/genética , Peptídeos/imunologia , Plasmídeos/genética , Receptor Muscarínico M2/genética
19.
J Immunol Res ; 2018: 5301548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854842

RESUMO

The pathogenesis of viral myocarditis includes both the direct damage mediated by viral infection and the indirect lesion resulted from host immune responses. Myocarditis can progress into dilated cardiomyopathy that is also associated with immunopathogenesis. T cell-mediated autoimmunity, antibody-mediated autoimmunity (autoantibodies), and innate immunity, working together, contribute to the development of myocarditis and dilated cardiomyopathy.


Assuntos
Autoanticorpos/metabolismo , Cardiomiopatia Dilatada/imunologia , Miocardite/imunologia , Linfócitos T/imunologia , Viroses/imunologia , Animais , Autoimunidade , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata
20.
Front Immunol ; 9: 911, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755478

RESUMO

Chronic inflammation and resulting tissue damage underlie the vast majority of acquired cardiovascular disease (CVD), a general term encompassing a widely diverse array of conditions. Both innate and adaptive immune mechanisms contribute to chronic inflammation in CVD. Although maladies, such as atherosclerosis and cardiac fibrosis, are commonly conceptualized as disorders of inflammation, the cellular and molecular mechanisms that promote inflammation during the natural history of these diseases in human patients are not fully defined. Autoantibodies (AAbs) with specificity to self-derived epitopes accompany many forms of CVD in humans. Both adaptive/induced iAAbs (generated following cognate antigen encounter) and also autoantigen-reactive natural antibodies (produced independently of infection and in the absence of T cell help) have been demonstrated to modulate the natural history of multiple forms of CVD including atherosclerosis (atherosclerotic cardiovascular disease), dilated cardiomyopathy, and valvular heart disease. Despite the breadth of experimental evidence for the role of AAbs in CVD, there is a lack of consensus regarding their specific functions, primarily due to disparate conclusions reached, even when similar approaches and experimental models are used. In this review, we seek to summarize the current understanding of AAb function in CVD through critical assessment of the clinical and experimental evidence in this field. We additionally highlight the difficulty in translating observations made in animal models to human physiology and disease and provide a summary of unresolved questions that are critical to address in future studies.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Inflamação/patologia , Animais , Aterosclerose/imunologia , Autoantígenos , Cardiomiopatia Dilatada/imunologia , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...