Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 148(5)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712444

RESUMO

The phytohormone auxin plays a role in almost all growth and developmental responses. The primary mechanism of auxin action involves the regulation of transcription via a core signaling pathway comprising proteins belonging to three classes: receptors, co-receptor/co-repressors and transcription factors. Recent studies have revealed that auxin signaling can be traced back at least as far as the transition to land. Moreover, studies in flowering plants have highlighted how expansion of the gene families encoding auxin components is tied to functional diversification. As we review here, these studies paint a picture of auxin signaling evolution as a driver of innovation.


Assuntos
Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carofíceas/crescimento & desenvolvimento , Carofíceas/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Marchantia/crescimento & desenvolvimento , Marchantia/metabolismo , Desenvolvimento Vegetal/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
2.
Chemosphere ; 254: 126844, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957274

RESUMO

The study aimed to evaluate the impact of iron (Fe) on the physiological and behavioural reaction of Chara tomentosa L. Fe was introduced into the environment in the form of iron chloride, the most common coagulants used in the restoration of water bodies. The investigations concerned the oxidative stress comprising phenolic compounds content, antioxidant activity and photosynthetic pigments concentration. Research was conducted as a laboratory microcosm experiment with one-off application of Fe at the level of 26.8 mg dm-3. Coagulant application caused short-term acidification, increased salinity and deterioration of light conditions. The shading resulted initially from the increase of water colour and turbidity and was followed by covering of the charophytes with a precipitated suspension. C. tomentosa did not activate defensive mechanisms to prevent the shading effect such as intensive elongation and elevated concentration of chlorophylls. Neither oxidative stress nor production of stress-specific phenolic metabolites was found. It was a result of iron coagulant toxicity, which led to cell membrane damage and leakage of cell contents to the water environment. Charophyte growth was significantly impaired, and thalli suffered numerous chlorotic and necrotic spots which extended gradually during experiment and finally caused death of specimens.


Assuntos
Carofíceas/efeitos dos fármacos , Ecossistema , Ferro/farmacologia , Fosfatos/farmacologia , Chara/efeitos dos fármacos , Carofíceas/crescimento & desenvolvimento , Precipitação Química , Clorofila/metabolismo , Ferro/toxicidade , Lagos/química , Estresse Oxidativo , Fenóis/análise , Água/química
3.
Sci Total Environ ; 661: 148-154, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30669047

RESUMO

Charophytes play a critical role for the functioning of shallow lake ecosystems. Although growth of charophytes can be limited by many factors, such as temperature, nutrients and light availability, our understanding about concomitant effects of climate warming and other large-scale environmental perturbations, e.g. increases in humic matter content ('brownification') is still limited. Here we conducted an outdoor mesocosm experiment during 71days with a common charophyte species, Chara vulgaris, along an increasing gradient of temperature and brownification. We hypothesized the growth of C. vulgaris to increase with temperature, but to level off along the combined temperature and brownification gradient when reaching a critical threshold for light limitation via brownification. We show that C. vulgaris increases the relative growth rate (RGR), main and total shoot elongation, as well as number of lateral shoots when temperature and brownification increased by +2°C and+100%, respectively above today's levels. However, the RGR, shoot elongation and number of lateral shoots declined at further increment of temperature and brownification. Macrophyte weight-length ratio decreased with increased temperature and brownification, indicating that C. vulgaris allocate more resources or energy for shoot elongation instead of biomass increase at warmer temperatures and higher brownification. Our study shows that C. vulgaris will initially benefit from warming and brownification but will then decline as a future scenario of increased warming and brownification reaches a certain threshold level, in case of our experiment at +4°C and a 2-fold increase in brownification above today's levels.


Assuntos
Carofíceas/fisiologia , Mudança Climática , Temperatura Alta/efeitos adversos , Substâncias Húmicas/análise , Lagos/química , Carofíceas/crescimento & desenvolvimento , Dinâmica Populacional
4.
J Phycol ; 54(6): 818-828, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30229900

RESUMO

Filaments in the surface layers of metaphytic mats are exposed to high photon flux densities of PAR and UVBR. We investigated the effect of UVBR exposure on growth of eight isolates of common metaphytic algae (Cladophora, Mougeotia, Oedogonium, Pithophora, Spirogyra, and Zygnema) acclimated to either high or low PAR levels prior to UVBR exposure. All isolates acclimated to low PAR exhibited significant reductions in growth rate caused by the UVBR exposure (P < 0.05). Acclimation to high PAR resulted in seven of the isolates being more tolerant of the UVB exposure. The two Zygnema isolates exhibited the most pronounced effect of high PAR acclimation with growth rates of UVB exposed treatments being equal to that of controls (P > 0.05). High PAR acclimation also protected chlorophyll a levels in the Zygnema isolates. Absorption of UVB by methanol extracts increased 322%-381% for the two Zygnema isolates when high PAR acclimated. The broad absorption peak at 270 nm suggests that phenolic compounds were responsible. Previous studies have shown that Zygnema isolates from extreme environments tolerate UVBR and contain UVB screening compounds, but our results extend these adaptions to Zygnema from typical temperate zone habitats. Although none of the other metaphytic algae produced UVB absorbing compounds, they all exhibited higher growth rates under UVBR exposure following high PAR acclimation. This suggests that the algae evaluated have inducible defenses against UVBR exposure that coupled with their mat structure would provide an adaption to the challenging light environment in shallow-water habitats.


Assuntos
Carofíceas/efeitos da radiação , Clorófitas/efeitos da radiação , Alga Marinha/efeitos da radiação , Raios Ultravioleta , Carofíceas/crescimento & desenvolvimento , Carofíceas/metabolismo , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Lagoas , Rios , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/metabolismo , Protetores Solares/metabolismo , Protetores Solares/efeitos da radiação
5.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28827406

RESUMO

Cell wall-modifying enzymes have been previously investigated in charophyte green algae (CGA) in cultures of uniform age, giving limited insight into their roles. Therefore, we investigated the in situ localisation and specificity of enzymes acting on hemicelluloses in CGA genera of different morphologies and developmental stages. In vivo transglycosylation between xyloglucan and an endogenous donor in filamentous Klebsormidium and Zygnema was observed in longitudinal cell walls of young (1 month) but not old cells (1 year), suggesting that it has a role in cell growth. By contrast, in parenchymatous Chara, transglycanase action occurred in all cell planes. In Klebsormidium and Zygnema, the location of enzyme action mainly occurred in regions where xyloglucans and mannans, and to a lesser extent mixed-linkage ß-glucan (MLG), were present, indicating predominantly xyloglucan:xyloglucan endotransglucosylase (XET) activity. Novel transglycosylation activities between xyloglucan and xylan, and xyloglucan and galactomannan were identified in vitro in both genera. Our results show that several cell wall-modifying enzymes are present in CGA, and that differences in morphology and cell age are related to enzyme localisation and specificity. This indicates an evolutionary significance of cell wall modifications, as similar changes are known in their immediate descendants, the land plants. This article has an associated First Person interview with the first author of the paper.


Assuntos
Carofíceas/anatomia & histologia , Carofíceas/crescimento & desenvolvimento , Glicosiltransferases/metabolismo , Parede Celular/metabolismo , Carofíceas/enzimologia , Fluorescência , Glucanos/metabolismo , Glicosilação , Pectinas/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
6.
Plant Physiol ; 174(3): 1621-1632, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28533212

RESUMO

The phytohormone auxin regulates many aspects of growth and development in land plants, but the origin and evolution of auxin signaling and response mechanisms remain largely unknown. Indeed, it remains to be investigated whether auxin-related pathways diverged before the emergence of land plants. To address this knowledge deficit, we analyzed auxin responses in the charophyte alga Klebsormidium nitens NIES-2285, whose ancestor diverged from a green algal ancestor during the evolution of land plants. This strain is the same as Klebsormidium flaccidum NIES-2285, for which the draft genome was sequenced in 2014, and was taxonomically reclassified as K. nitens This genome sequence revealed genes involved in auxin responses. Furthermore, the auxin indole-3-acetic acid (IAA) was detected in cultures of K. nitens, but K. nitens lacks the central regulators of the canonical auxin-signaling pathway found in land plants. Exogenous IAA inhibited cell division and cell elongation in K. nitens Inhibitors of auxin biosynthesis and of polar auxin transport also inhibited cell division and elongation. Moreover, exogenous IAA rapidly induced expression of a LATERAL ORGAN BOUNDARIES-DOMAIN transcription factor. These results suggest that K. nitens has acquired the part of the auxin system that regulates transcription and cell growth without the requirement for the central players that govern auxin signaling in land plants.


Assuntos
Carofíceas/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/metabolismo , Transporte Biológico/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Divisão Celular/efeitos dos fármacos , Carofíceas/efeitos dos fármacos , Carofíceas/genética , Carofíceas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Microscopia de Fluorescência , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácidos Tri-Iodobenzoicos/farmacologia
7.
Am J Bot ; 102(3): 417-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25784475

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Zygotes of Coleochaete are provisioned by the maternal thallus before undergoing 3-5 rounds of division to produce 8-32 zoospores. An understanding of the selective forces favoring postzygotic divisions would be relevant not only to the interpretation of Coleochaete life history but also to the origin of a multicellular diploid phase in embryophytes.• METHODS: Simple optimization models are developed of the number of zygotes per maternal thallus and number of zoospores per zygote.• KEY RESULTS: Zygotic mitosis is favored once zygotic size exceeds a threshold, but natural selection usually promotes investment in additional zygotes before zygotes reach this threshold. Factors that favor production of fewer, larger zygotes include multiple paternity, low fecundity, and accessory costs of zygote production. Such factors can result in zygotes exceeding the size at which zygotic mitosis becomes profitable.• CONCLUSIONS: Coleochaete may possess large zygotes that undergo multiple fission because of accessory costs associated with matrotrophy, including costs of cortical cells and unfertilized oogonia. The unpredictability of fertilization on land is proposed to have increased accessory costs from unfertilized ova and, as a consequence, to have favored the production of larger zygotes that underwent postzygotic division to produce diploid sporophytes.


Assuntos
Evolução Biológica , Divisão Celular , Carofíceas/crescimento & desenvolvimento , Modelos Biológicos , Ploidias , Reprodução
8.
Aquat Toxicol ; 144-145: 1-10, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24121158

RESUMO

Microcystins (MCs) are produced by cyanobacteria in aquatic environments and adversely affect macrophytes at very high concentrations. However, the effects of MC on macrophytes at concentrations of environmental relevance are largely unknown. The main objective of this study was to analyze the allelopathic effects of MC-LR at natural concentrations (1, 8 and 16 µg MC-LR/L) on five charophyte species (Chara aspera, C. baltica, C. hispida, C. vulgaris and Nitella hyalina) and the angiosperm Myriophyllum spicatum. Macrophyte specimens were obtained from a restored area located in Albufera de València Natural Park, a protected coastal Mediterranean wetland. Two different experiments were conducted involving (i) the addition of MC-LR to natural sediment to evaluate its effects on seed germination and (ii) the addition of MC-LR to water cultures of macrophytes to evaluate its effects on growth and metabolic functions. In water, the MC-LR concentration decreased by 84% in two weeks; the loss was not significant in sediment. The first seedlings (all C. hispida) emerged from the wetland sediment following a delay of a few days in the presence of MC-LR. The germination rates in 8 and 16 µg MC-LR/L treatments were 44% and 11% of that occurring in the absence of MC, but these differences disappeared over time. The final density was 6-7 germlings/dm(3). Final germling length was unaffected by MC-LR. Rotifers (Lecane spp.) emerging from the natural sediment during the experiment were favored by MC-LR; the opposite pattern was observed in the cladoceran Daphnia magna. The growth rates of C. vulgaris, C. baltica and N. hyalina were unaffected by MC exposure, whereas those of C. hispida and C. aspera were reduced in the MC treatments relative to the control treatment. The concentration of chlorophyll-a and the in vivo net photosynthetic rate were lower in the presence of MC-LR, even at the lowest concentration, for all of the characeans tested. M. spicatum was sensitive to the presence of MC-LR in the culture medium; the growth and chlorophyll-a concentrations were reduced. Therefore, environmentally relevant concentrations of MC might induce important changes in macrophyte meadows and the structure of the associated plankton community. Synchrony or delay in the processes evaluated here in response to environmentally relevant concentrations of cyanobacteria MC exudates can enhance understanding of the turning point to alternative states and the point of no return in eutrophicated shallow lakes.


Assuntos
Carofíceas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Magnoliopsida/efeitos dos fármacos , Microcistinas/toxicidade , Carofíceas/crescimento & desenvolvimento , Carofíceas/metabolismo , Sedimentos Geológicos/química , Toxinas Marinhas , Pigmentos Biológicos/metabolismo , Poluentes Químicos da Água/toxicidade , Áreas Alagadas
9.
J Environ Sci (China) ; 25(3): 596-604, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23923434

RESUMO

The ability for usage of common freshwater charophytes, Chara aculeolata and Nitella opaca in removal of cadmium (Cd), lead (Pb) and zinc (Zn) from wastewater was examined. C. aculeolata and N. opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L), Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days. C. aculeolata was more tolerant of Cd and Pb than N. opaca. The relative growth rate of N. opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn. Both macroalgae showed a reduction in chloroplast, chlorophyll and carotenoid content after Cd and Pb exposure, while Zn exposure had little effects. The bioaccumulation of both Cd and Pb was higher in N. opaca (1544.3 microg/g at 0.5 mg/L Cd, 21657.0 microg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C. aculeolata (6703.5 microg/g at 10 mg/L Zn). In addition, high bioconcentration factor values (> 1000) for Cd and Pb were observed in both species. C. aculeolata showed higher percentage of Cd and Pb removal (> 95%) than N. opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.


Assuntos
Carofíceas/efeitos dos fármacos , Carofíceas/metabolismo , Metais Pesados/toxicidade , Biodegradação Ambiental/efeitos dos fármacos , Cádmio/isolamento & purificação , Cádmio/toxicidade , Carofíceas/citologia , Carofíceas/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Chumbo/isolamento & purificação , Chumbo/toxicidade , Metais Pesados/isolamento & purificação , Pigmentos Biológicos/metabolismo , Zinco/isolamento & purificação , Zinco/toxicidade
10.
New Phytol ; 189(4): 1051-1059, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21087261

RESUMO

• Eutrophication is a threat to wetlands worldwide. Elevated phosphorus concentration is often the main driver of loss of biodiversity and ecosystem function, but effects of phosphorus and nitrogen have proved largely inseparable, because they vary colinearly. Charophytes, aquatic algae that are very close to the evolutionary link with the land-plant lineage, provide a sensitive system for disentangling complex pollutant threats. • Here, we investigated aquatic vegetation and water quality at the principal sites for charophyte biodiversity in the UK and used hierarchical partitioning to discriminate independent effects of pollutants on their occurrence. A laboratory experiment examined the growth responses of a representative species (Chara globularis) to nitrate. • Nitrate-N exerted the greatest detrimental effect on charophyte occurrence in the field. Furthermore, growth of C. globularis in the laboratory was inhibited above very low concentrations. Smaller independent effects of copper (Cu), cadmium (Cd), cobalt (Co), phosphate-P, nickel (Ni), boron (B) and manganese (Mn) on charophyte occurrence were discriminated. • It is possible to separate the deleterious effects of phosphorus and nitrogen on aquatic organisms in the field. Nitrate is a critical factor and a mean annual average concentration limit of c. 2 mg l⁻¹ nitrate-N is necessary to protect charophytes and their services within wetland ecosystems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Boro/farmacologia , Carofíceas/efeitos dos fármacos , Metais Pesados/farmacologia , Nitratos/farmacologia , Fosfatos/farmacologia , Água/normas , Organismos Aquáticos/crescimento & desenvolvimento , Carofíceas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...