Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.109
Filtrar
1.
J Immunol ; 212(11): 1791-1806, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629918

RESUMO

RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.


Assuntos
Proteína Adaptadora de Sinalização NOD2 , Peptidoglicano , Animais , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Peptidoglicano/metabolismo , Peptidoglicano/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Carpas/imunologia , Camundongos , Ligação Proteica , Transdução de Sinais/imunologia , Humanos , Motivos de Aminoácidos , Peixe-Zebra/imunologia
2.
Fish Shellfish Immunol ; 149: 109547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593522

RESUMO

Heat-killed probiotics offer an alternative approach to enhance growth and disease resistance in farmed fish. In this study, we isolated Lactiplantibacillus plantarum VSG3 from the gut of Labeo rohita to investigate the effects of heat-killed L. plantarum (HK-LP) on the health and growth performance of Cyprinus carpio fingerlings. Different concentrations of HK-LP (0, 50, 100, 200, 300, and 400 mg/kg) were administered to the fish, followed by a challenge with Aeromonas hydrophila after 8 weeks of feeding. Notably, the LP200 group exhibited significantly improved percentage weight gain and specific growth rate, accompanied by the lowest feed conversion ratio. Post-challenge survival rates were considerably enhanced in the LP200 group, reaching 60.65%. Moreover, serum analysis indicated significantly higher levels of total protein and albumin in the LP200 group than in the control group. Although HK-LP had no substantial impact on certain serum parameters (glucose, total cholesterol, cortisol, and alanine aminotransferase), aspartate aminotransferase levels were considerably low in the LP200 group. Intestinal protease and trypsin activities significantly increased in the LP200 group, while no significant changes were observed in lipase and amylase activities post-pathogen challenge. Serum immunological indices, including lysozyme, alternative complement pathway, and phagocytic activity, improved considerably in the LP200 group. Additionally, serum antioxidant enzyme activities (superoxide dismutase [SOD], glutathione peroxidase [GPx], catalase [CAT], and myeloperoxidase) were significantly elevated in the LP200 group, while malondialdehyde level was reduced. Gene expression analysis in liver tissue indicated strong upregulation of antioxidant-related genes (SOD, CAT, nuclear factor erythroid 2 [NFE2]-related factor 2 [Nrf2], Kelch-like ECH-associated protein 1[Keap1]) in the LP100 and LP200 groups. Pro-inflammatory cytokines (IL-1ß and TNF-α) were considerably downregulated in the kidneys of the LP200 post-challenged fish, although the anti-inflammatory cytokine IL-10 showed an increased expression. Quadratic regression analysis identified the optimal dietary HK-LP level for maximizing growth and immune performance (200.381-270.003 mg/kg). In summary, our findings underscore the potential of HK-LP as a valuable dietary supplement for enhancing carp aquaculture, particularly at the appropriate concentration.


Assuntos
Aeromonas hydrophila , Ração Animal , Antioxidantes , Carpas , Dieta , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Probióticos , Animais , Probióticos/administração & dosagem , Probióticos/farmacologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Carpas/imunologia , Carpas/crescimento & desenvolvimento , Ração Animal/análise , Doenças dos Peixes/imunologia , Dieta/veterinária , Aeromonas hydrophila/fisiologia , Antioxidantes/metabolismo , Imunidade Inata , Lactobacillus plantarum/química , Temperatura Alta , Expressão Gênica , Suplementos Nutricionais/análise , Distribuição Aleatória , Resistência à Doença
3.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631439

RESUMO

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Interleucina-6 , Infecções por Reoviridae , Reoviridae , Fator de Transcrição STAT3 , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Carpas/imunologia , Carpas/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
4.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636736

RESUMO

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Assuntos
Aeromonas hydrophila , Arginase , Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Mitocôndrias , Óxido Nítrico , Animais , Aeromonas hydrophila/fisiologia , Arginase/genética , Arginase/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Óxido Nítrico/metabolismo , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Arginina
5.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636737

RESUMO

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Interferons , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Transdução de Sinais , Ubiquitinação , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Rhabdoviridae/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Imunidade Inata/genética , Ubiquitina Tiolesterase/genética , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária
6.
Fish Shellfish Immunol ; 149: 109573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636742

RESUMO

This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.


Assuntos
Ração Animal , Carpas , Dieta , Suplementos Nutricionais , Fígado , Animais , Carpas/crescimento & desenvolvimento , Carpas/imunologia , Ração Animal/análise , Fígado/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Lycium/química
7.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642725

RESUMO

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Carpas/imunologia , Carpas/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixe-Zebra
8.
Fish Shellfish Immunol ; 149: 109575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663463

RESUMO

Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 µg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-ß1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1ß. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.


Assuntos
Apoptose , Carpas , Ácidos Cumáricos , Doenças dos Peixes , Inflamação , Ivermectina , Estresse Oxidativo , Animais , Carpas/imunologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/imunologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/veterinária , Apoptose/efeitos dos fármacos , Nefropatias/veterinária , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/imunologia , Rim/efeitos dos fármacos , Rim/patologia , Distribuição Aleatória , Ração Animal/análise
9.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670410

RESUMO

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Assuntos
Autofagia , Carpas , Doenças dos Peixes , MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Infecções por Reoviridae , Reoviridae , Animais , MicroRNAs/genética , MicroRNAs/imunologia , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reoviridae/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linhagem Celular , Regulação da Expressão Gênica/imunologia
10.
Fish Shellfish Immunol ; 149: 109474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513914

RESUMO

Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.


Assuntos
Carpas , Hemoglobinas , Hepatócitos , Animais , Carpas/imunologia , Carpas/genética , Inflamação/veterinária , Inflamação/imunologia , Morte Celular , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos
11.
Fish Shellfish Immunol ; 149: 109524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527657

RESUMO

Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.


Assuntos
Carpas , Proteínas de Peixes , Inflamação , Lipopolissacarídeos , MicroRNAs , Animais , MicroRNAs/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Lipopolissacarídeos/farmacologia , Carpas/genética , Carpas/imunologia , Inflamação/genética , Inflamação/imunologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/imunologia , Imunidade Inata/genética , Linhagem Celular
12.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554743

RESUMO

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1ß, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Assuntos
Aeromonas hydrophila , Carpas , Eritrócitos , Escherichia coli , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Animais , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Eritrócitos/imunologia , Aeromonas hydrophila/fisiologia , Imunidade Inata/genética , Escherichia coli/imunologia , Escherichia coli/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Staphylococcus aureus/fisiologia , Staphylococcus aureus/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/veterinária , Transcriptoma/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária
13.
Dev Comp Immunol ; 156: 105170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522716

RESUMO

Ubiquitin-specific peptidase 46 (USP46) functions as a deubiquitinating enzyme, facilitating the removal of ubiquitin molecules attached to substrate proteins and playing a critical role in cancer and neurodegenerative diseases. However, its function in innate antiviral immunity is unknown. In this study we cloned and identified bcUSP46, a homolog of USP46 from black carp. We discovered that overexpression of bcUSP46 enhanced the transcription of interferon (IFN) promoters and increased the expression of IFN, PKR, and Mx1. In addition, bcUSP46 knockdown significantly inhibited the expression of ISG genes, as well as the antiviral activity of the host cells. Interestingly, when bcUSP46 was co-expressed with the RLR factors, it significantly enhanced the activity of the IFN promoter mediated by these factors, especially TANK-binding kinase 1 (TBK1). The subsequent co-immunoprecipitation (co-IP) and immunofluorescence (IF) assay confirmed the association between bcUSP46 and bcTBK1. Noteworthily, co-expression of bcUSP46 with bcTBK1 led to an elevation of bcTBK1 protein level. Further analysis revealed that bcUSP46 stabilized bcTBK1 by eliminating the K48-linked ubiquitination of bcTBK1. Overall, our findings highlight the unique role of USP46 in modulating TBK1/IFN signaling and enrich our knowledge of the function of deubiquitination in regulating innate immunity in vertebrates.


Assuntos
Carpas , Proteínas de Peixes , Imunidade Inata , Interferons , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ubiquitinação , Carpas/imunologia , Animais , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferons/metabolismo , Interferons/genética , Humanos , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética
14.
Fish Shellfish Immunol ; 132: 108445, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36414129

RESUMO

IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and has a variety of biological functions in tissue homeostasis and regulation of host immune defenses. It signals through a heterodimeric receptor composed of a subunit with a long intracellular domain (R1 type receptor) and a subunit with a short intracellular domain (R2 type receptor). In this study, the R1 type receptor (CiIL-20R1/CRFB8) and the R2 type receptor (CiIL-20R2/CRFB16) were identified in grass carp Ctenopharyngodon idella. Expression analysis revealed that IL-20R2 was highly expressed in the gills and skin in healthy fish. Infection with Flavobacterium columnare resulted in the downregulation of both receptors in the gill at 48 and 72 h, whilst infection with grass carp reovirus induced their expression in the head kidney and spleen at 72 h. In the primary head kidney leucocytes, the expression levels of IL-20R1 and IL-20R2 were decreased after stimulation with 250 ng/mL IL-1ß but not affected by IFN-γ. Co-immunoprecipitation analysis showed that CiIL-20R2/CRFB16 but not CiIL-20R1/CRFB8 bound to CiIL-20L. Furthermore, it was shown that CiIL-20R1/CRFB8 was responsible for activating the phosphorylation of STAT3, whilst CiIL-20R2/CRFB16 was not involved. Structural modeling analysis showed that key residues involved in the interaction between IL-20 and receptors were highly conserved between grass carp and humans, suggesting that the signal transduction and functions of IL-20/IL-20R axis are evolutionarily conserved.


Assuntos
Carpas , Doenças dos Peixes , Interleucinas , Animais , Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Fosforilação , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Interleucinas/metabolismo
15.
Dev Comp Immunol ; 140: 104616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565823

RESUMO

ß-defensins (BDs) are a group of cysteine-rich cationic antimicrobial peptides and play important roles in the first line of defense against infection. In this study, the expression and antibacterial activities of three grass carp (Ctenopharyngodon idella) (Ci) ß-defensin (BD) peptides were comparatively investigated. Expression analysis reveals that CiBD1-3 were constitutively expressed in tissues, with the highest expression detected in the skin. The CiBD-1 transcripts were more abundant than CiBD-2 and CiBD-3. In the primary head kidney leukocytes, CiBDs were induced by PHA, LPS, poly(I:C) and cytokines such as IL-1ß and IFN-γ. In vivo challenge of fish with Aeromonas hydrophila resulted in the up-regulation of CiBDs in the head kidney and hindgut. To determine the biological activities, recombinant CiBD proteins were produced in the HEK293-F cells and purified for the minimum inhibitory concentration assay. It was found that all three recombinant CiBD proteins were effective to inhibit the growth of Gram-negative fish bacterial pathogens including Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare and Klebsiella pneumoniae and Gram-positive Staphylococcus aureus. CiBD-2 and CiBD-3 were more effective than CiBD-1. Our results demonstrate that all the three CiBDs have broad antibacterial activity against fish bacterial pathogens.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , beta-Defensinas , Animais , Humanos , Aeromonas hydrophila/patogenicidade , Antibacterianos , beta-Defensinas/genética , beta-Defensinas/imunologia , Carpas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Células HEK293 , Imunidade Inata , Proteínas Recombinantes
16.
Front Immunol ; 13: 970125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032163

RESUMO

Gut microbiota play a vital role in fish health homeostasis. Antibiotics are known to alter microbial community composition and diversity; however, the substantial effects of antibiotics upon the gut microbiome with respect to immune-related pathways in healthy fish remain unclear. Accordingly, here we explored the impact of two antibiotics on the intestinal health, immune response, microbiome dynamics, and transcriptome profiles of grass carp. A two-week feeding trial was carried out in which the basal diet was complemented with enrofloxacin (10 mg/kg) or florfenicol (10 mg/kg). The results showed that: (1) Enrofloxacin and florfenicol both induced intestinal oxidative stress and reduced the digestive enzyme activity of grass carp. (2) High-throughput sequencing of 16S rDNA revealed that enrofloxacin but not the florfenicol treatment influenced gut microbiota diversity in grass carp by shifting α/ß-diversity with more abundant pathogens detected. (3) Transcriptome profiling demonstrated that florfenicol down-regulated the immune-related pathways of grass carp, and the network analysis revealed that IgA was negatively correlated with certain pathogens, such as Shewanella and Aeromonas. (4) Antibiotic-induced alternations of gut core microbes were revealed via immune-related transcripts, as were lower mRNA expression levels of mucosal-related genes. (5) Apoptosis and histopathological changes were detected in the enrofloxacin- and florfenicol-treated groups compared with the control group. Overall, administering antibiotics will promote oxidative stress, cause intestinal flora dysbiosis, inhibit the mucosal immune system, and induce apoptosis in grass carp.


Assuntos
Antibacterianos/toxicidade , Carpas , Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Carpas/imunologia , Enrofloxacina , Microbioma Gastrointestinal/efeitos dos fármacos
17.
Toxins (Basel) ; 14(2)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202180

RESUMO

Feeding experiments with juvenile grass carp (Ctenopharyngodon idella) fed with genetically modified maize MON 810 or DAS-59122 dried leaf biomass were carried out with 1-, 3- and 6-month exposures. Dosages of 3-7 µg/fish/day Cry1Ab or 18-55 µg/fish/day Cry34Ab1 toxin did not cause mortality. No difference occurred in body or abdominal sac weights. No differences appeared in levels of inorganic phosphate, calcium, fructosamine, bile acids, triglycerides, cholesterol, and alanine and aspartame aminotransferases. DAS-59122 did not alter blood parameters tested after 3 months of feeding. MON 810 slightly decreased serum albumin levels compared to the control, only in one group. Tapeworm (Bothriocephalus acheilognathi) infection changed the levels of inorganic phosphate and calcium. Cry34Ab1 toxin appeared in blood (12.6 ± 1.9 ng/mL), but not in the muscle. It was detected in B. acheilognathi. Cry1Ab was hardly detectable in certain samples near the limit of detection. Degradation of Cry toxins was extremely quick in the fish gastrointestinal tract. After 6 months of feeding, only mild indications in certain serum parameters were observed: MON 810 slightly increased the level of apoptotic cells in the blood and reduced the number of thrombocytes in one group; DAS-59122 mildly increased the number of granulocytes compared to the near-isogenic line.


Assuntos
Ração Animal/microbiologia , Ração Animal/toxicidade , Toxinas de Bacillus thuringiensis/toxicidade , Carpas/anatomia & histologia , Carpas/crescimento & desenvolvimento , Carpas/imunologia , Zea mays/genética , Animais , Variação Genética , Genótipo , Herbivoria , Plantas Geneticamente Modificadas/genética , Zea mays/microbiologia
19.
Fish Shellfish Immunol ; 121: 197-204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026409

RESUMO

In the aquaculture industry, an efficient and safe water purification system is important to prevent mass mortality by virulent pathogens. As extensive use of traditional methods (e.g.: povidone-iodine, ozone, ultraviolet irradiation, formalin, and chlorine dioxide) have adverse effects on cultured fish, an appropriate and alternative water purification method is vital for the sustainability of the industry. Non-thermal plasma technology has been successfully used for various biomedical purposes (e.g: food sterilization, medical device disinfection, wound healing, cancer therapy, etc.) and has great potential to be used as a sterilizing system. However, few studies have been conducted on its usefulness in the aquaculture industry. In this study, we investigated the bactericidal efficacy of plasma-activated water induced by non-thermal plasma and its histopathological as well as immunological adverse effects on koi. A highly virulent Aeromonas hydrophila SNU HS7, which caused massive mortality of koi, was used for this study. Non-thermal plasma was applied for 10 min to the fish tanks with 1.2 × 109 CFU/mL SNU HS7 using PLMB-20 system to confirm the sterilization efficacy and to observe the survival and immunological reaction of koi for 14 days. As a result, gross pathological, histopathological, and immunological investigations did not reveal any significant adverse effects in fish as compared to the control groups. To the best of our knowledge, this is the first study showing that non-thermal plasma can be used for sterilization of rearing water without giving significant physiological damage to the fish, even under the assumption of extreme situations. As plasma can effectively sterilize not only bacteria but also other unknown pathogens, the results of this study are showing a promising future in purifying water in aquaculture practice.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Antibacterianos , Aquicultura , Carpas/imunologia , Carpas/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Gases em Plasma , Água
20.
Fish Physiol Biochem ; 48(1): 117-131, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35006528

RESUMO

The heavy metal cadmium (Cd2+) is an environmental pollutant that poses serious health hazards. Due to the increasing contamination of aquatic systems with Cd2+, the increased accumulation of Cd2+ in fish has become a food safety and public health concern. Heme oxygenase (HO) is an important antioxidant enzyme that plays a key role in defending the body against oxidative damage, but little research has been done in common carp. In this study, 6 HO genes were identified in the common carp genome database. Comparative genomics analysis showed considerable expansion of the HO genes and verified the four-round whole genome duplication (WGD) event in common carp. Phylogenetic analysis revealed that all HO genes of common carp were clustered into orthologous groups, indicating high conservation during evolution. In addition, the tissue distribution results showed that most HO genes had extensive tissue distribution and showed tissue-specific expression patterns. Exposure to 0.5 mg/L Cd2+ significantly reduced the expression of TGF-ß and IL-10 in common carp, which may indicate that Cd2+ exposure can destroy the physical barrier function of the intestine, inhibit intestinal immune defense and induce intestinal inflammation. To find a suitable concentration of Bacillus coagulans that could activate HO-1 genes and the immunity of the organism, we investigated the changes in HO-1 gene expression levels in the intestinal tract of common carp under Cd2+ stress at 30 days and 60 days by adding different concentrations of B. coagulans to the feed. Compared with the Cd2+ stress group without supplementation, the expression levels of the HO-1 gene in the gut of three different concentrations of B. coagulans were almost increased. And B. coagulans with L2 concentrations had better activation effect on the HO-1 gene. Similarly, compared to the Cd2+ stressed group, adding B. coagulans to the diet can almost cause the early upregulation of IL-10 and TGF-ß genes. Therefore, the addition of appropriate concentrations of B. coagulans may be a good way to activate HO-1, IL-10, and TGF-ß genes, reduce oxidative damage, and encourage the immune.


Assuntos
Bacillus coagulans , Cádmio , Carpas , Heme Oxigenase (Desciclizante)/genética , Imunidade Inata , Filogenia , Ração Animal/análise , Animais , Cádmio/toxicidade , Carpas/genética , Carpas/imunologia , Dieta/veterinária , Proteínas de Peixes/genética , Interleucina-10/genética , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...