Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(1): 145-155, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977817

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a major health problem with limited treatment options. Although optimizing cardiac energy metabolism is a potential approach to treating heart failure, it is poorly understood what alterations in cardiac energy metabolism actually occur in HFpEF. To determine this, we used mice in which HFpEF was induced using an obesity and hypertension HFpEF protocol for 10 weeks. Next, carvedilol, a third-generation ß-blocker and a biased agonist that exhibits agonist-like effects through ß arrestins by activating extracellular signal-regulated kinase, was used to decrease one of these parameters, namely hypertension. Heart function was evaluated by invasive pressure-volume loops and echocardiography as well as by ex vivo working heart perfusions. Glycolysis and oxidation rates of glucose, fatty acids, and ketones were measured in the isolated working hearts. The development of HFpEF was associated with a dramatic decrease in cardiac glucose oxidation rates, with a parallel increase in palmitate oxidation rates. Carvedilol treatment decreased the development of HFpEF but had no major effect on cardiac energy substrate metabolism. Carvedilol treatment did increase the expression of cardiac ß arrestin 2 and proteins involved in mitochondrial biogenesis. Decreasing bodyweight in obese HFpEF mice increased glucose oxidation and improved heart function. This suggests that the dramatic energy metabolic changes in HFpEF mice hearts are primarily due to the obesity component of the HFpEF model. SIGNIFICANCE STATEMENT: Metabolic inflexibility occurs in heart failure with preserved ejection fraction (HFpEF) mice hearts. Lowering blood pressure improves heart function in HFpEF mice with no major effect on energy metabolism. Between hypertension and obesity, the latter appears to have the major role in HFpEF cardiac energetic changes. Carvedilol increases mitochondrial biogenesis and overall energy expenditure in HFpEF hearts.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Volume Sistólico , Miocárdio/metabolismo , Carvedilol/farmacologia , Carvedilol/metabolismo , Metabolismo Energético , Obesidade/complicações , Obesidade/metabolismo , Hipertensão/metabolismo , Glucose/metabolismo
2.
J Pharmacol Exp Ther ; 388(2): 495-505, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37827703

RESUMO

The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard (NM) cause severe vesicating skin injuries. The pathologic mechanisms for the skin injury following mustard exposure are poorly understood; therefore, no effective countermeasure is available. Previous reports demonstrated the protective activity of carvedilol, a US Food and Drug Administration (FDA)-approved ß-blocker, against UV radiation-induced skin damage. Thus, the current study evaluated the effects of carvedilol on NM-induced skin injuries in vitro and in vivo. In the murine epidermal cell line JB6 Cl 41-5a, ß-blockers with different receptor subtype selectivity were examined. Carvedilol and both of its enantiomers, R- and S-carvedilol, were the only tested ligands statistically reducing NM-induced cytotoxicity. Carvedilol also reduced NM-induced apoptosis and p53 expression. In SKH-1 mice, NM increased epidermal thickness, damaged skin architecture, and induced nuclear factor κB (NF-κB)-related proinflammatory genes as assessed by RT2 Profiler PCR (polymerase chain reaction) Arrays. To model chemical warfare scenario, 30 minutes after exposure to NM, 10 µM carvedilol was applied topically. Twenty-four hours after NM exposure, carvedilol attenuated NM-induced epidermal thickening, Ki-67 expression, a marker of cellular proliferation, and multiple proinflammatory genes. Supporting the in vitro data, the non-ß-blocking R-enantiomer of carvedilol had similar effects as racemic carvedilol, and there was no difference between carvedilol and R-carvedilol in the PCR array data, suggesting that the skin protective effects are independent of the ß-adrenergic receptors. These data suggest that the ß-blocker carvedilol and its enantiomers can be repurposed as countermeasures against mustard-induced skin injuries. SIGNIFICANCE STATEMENT: The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard cause severe vesicating skin injuries for which no effective countermeasure is available. This study evaluated the effects of US Food and Drug Administration (FDA)-approved ß-blocker carvedilol on nitrogen mustard-induced skin injuries to repurpose this cardiovascular drug as a medical countermeasure.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Carvedilol/metabolismo , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/farmacologia , Gás de Mostarda/toxicidade , Pele , Antagonistas Adrenérgicos beta/farmacologia
3.
Toxicol Sci ; 196(2): 200-217, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632784

RESUMO

Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the ß-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos e Sais Biliares/metabolismo , Carvedilol/farmacologia , Carvedilol/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Proteínas de Membrana Transportadoras/metabolismo , Homeostase
4.
Commun Biol ; 5(1): 1097, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253525

RESUMO

Social recognition memory (SRM) is critical for maintaining social relationships and increasing the survival rate. The medial prefrontal cortex (mPFC) is an important brain area associated with SRM storage. Norepinephrine (NE) release regulates mPFC neuronal intrinsic excitability and excitatory synaptic transmission, however, the roles of NE signaling in the circuitry of the locus coeruleus (LC) pathway to the mPFC during SRM storage are unknown. Here we found that LC-mPFC NE projections bidirectionally regulated SRM consolidation. Propranolol infusion and ß-adrenergic receptors (ß-ARs) or ß-arrestin2 knockout in the mPFC disrupted SRM consolidation. When carvedilol, a ß-blocker that can mildly activate ß-arrestin-biased signaling, was injected, the mice showed no significant suppression of SRM consolidation. The impaired SRM consolidation caused by ß1-AR or ß-arrestin2 knockout in the mPFC was not rescued by activating LC-mPFC NE projections; however, the impaired SRM by inhibition of LC-mPFC NE projections or ß1-AR knockout in the mPFC was restored by activating the ß-arrestin signaling pathway in the mPFC. Furthermore, the activation of ß-arrestin signaling improved SRM consolidation in aged mice. Our study suggests that LC-mPFC NE projections regulate SRM consolidation through ß-arrestin-biased ß-AR signaling.


Assuntos
Norepinefrina , Propranolol , Animais , Carvedilol/metabolismo , Camundongos , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Córtex Pré-Frontal/fisiologia , Propranolol/metabolismo , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo
5.
Channels (Austin) ; 16(1): 97-112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35501948

RESUMO

Carvedilol is a nonspecific ß-blocker clinically used for the treatment of cardiovascular diseases but has also been shown to have profound effects on excitation-contraction coupling and Ca signaling at the cellular level. We investigate the mechanism by which carvedilol facilitates Ca transient (CaT) and action potential duration (APD) alternans in rabbit atrial myocytes. Carvedilol lowered the frequency threshold for pacing-induced CaT alternans and facilitated alternans in a concentration-dependent manner. Carvedilol prolonged the sarcoplasmic reticulum (SR) Ca release refractoriness by significantly increasing the time constant τ of recovery of SR Ca release; however, no changes in L-type calcium current recovery from inactivation or SR Ca load were found after carvedilol treatment. Carvedilol enhanced the degree of APD alternans nearly two-fold. Carvedilol slowed the APD restitution kinetics and steepened the APD restitution curve at the pacing frequency (2 Hz) where alternans were elicited. No effect on the CaT or APD alternans ratios was observed in experiments with a different ß-blocker (metoprolol), excluding the possibility that the carvedilol effect on CaT and APD alternans was determined by its ß-blocking properties. These data suggest that carvedilol contributes to the generation of CaT and APD alternans in atrial myocytes by modulating the restitution of CaT and APD.


Assuntos
Sinalização do Cálcio , Cálcio , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Carvedilol/metabolismo , Carvedilol/farmacologia , Coelhos , Retículo Sarcoplasmático/metabolismo
6.
Mol Pharmacol ; 100(5): 513-525, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34580163

RESUMO

Among ß-blockers that are clinically prescribed for heart failure, carvedilol is a first-choice agent with unique pharmacological properties. Carvedilol is distinct from other ß-blockers in its ability to elicit ß-arrestin-biased agonism, which has been suggested to underlie its cardioprotective effects. Augmenting the pharmacologic properties of carvedilol thus holds the promise of developing more efficacious and/or biased ß-blockers. We recently identified compound-6 (cmpd-6), the first small molecule positive allosteric modulator of the ß2-adrenergic receptor (ß2AR). Cmpd-6 is positively cooperative with orthosteric agonists at the ß2AR and enhances agonist-mediated transducer (G-protein and ß-arrestin) signaling in an unbiased manner. Here, we report that cmpd-6, quite unexpectedly, displays strong positive cooperativity only with carvedilol among a panel of structurally diverse ß-blockers. Cmpd-6 enhances the binding affinity of carvedilol for the ß2AR and augments its ability to competitively antagonize agonist-induced cAMP generation. Cmpd-6 potentiates ß-arrestin1- but not Gs-protein-mediated high-affinity binding of carvedilol at the ß2AR and ß-arrestin-mediated cellular functions in response to carvedilol including extracellular signal-regulated kinase phosphorylation, receptor endocytosis, and trafficking into lysosomes. Importantly, an analog of cmpd-6 that selectively retains positive cooperativity with carvedilol acts as a negative modulator of agonist-stimulated ß2AR signaling. These unprecedented cooperative properties of carvedilol and cmpd-6 have implications for fundamental understanding of G-protein-coupled receptor (GPCR) allosteric modulation, as well as for the development of more effective biased beta blockers and other GPCR therapeutics. SIGNIFICANCE STATEMENT: This study reports on the small molecule-mediated allosteric modulation of the ß-arrestin-biased ß-blocker, carvedilol. The small molecule, compound-6 (cmpd-6), displays an exclusive positive cooperativity with carvedilol among other ß-blockers and enhances the binding affinity of carvedilol for the ß2-adrenergic receptor. Cooperative effects of cmpd-6 augment the ß-blockade property of carvedilol while potentiating its ß-arrestin-mediated signaling functions. These findings have potential implications in advancing G-protein-coupled receptor allostery, developing biased therapeutics and remedying cardiovascular ailments.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Receptores Adrenérgicos beta 2 , beta-Arrestinas/farmacologia , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Carvedilol/química , Carvedilol/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Células Sf9 , beta-Arrestinas/química , beta-Arrestinas/metabolismo
7.
Am J Kidney Dis ; 77(5): 704-712, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33010357

RESUMO

RATIONAL & OBJECTIVE: Beta-blockers are recommended for patients with heart failure (HF) but their benefit in the dialysis population is uncertain. Beta-blockers are heterogeneous, including with respect to their removal by hemodialysis. We sought to evaluate whether ß-blocker use and their dialyzability characteristics were associated with early mortality among patients with chronic kidney disease with HF who transitioned to dialysis. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: Adults patients with chronic kidney disease (aged≥18 years) and HF who initiated either hemodialysis or peritoneal dialysis during January 1, 2007, to June 30, 2016, within an integrated health system were included. EXPOSURES: Patients were considered treated with ß-blockers if they had a quantity of drug dispensed covering the dialysis transition date. OUTCOMES: All-cause mortality within 6 months and 1 year or hospitalization within 6 months after transition to maintenance dialysis. ANALYTICAL APPROACH: Inverse probability of treatment weights using propensity scores was used to balance covariates between treatment groups. Cox proportional hazard analysis and logistic regression were used to investigate the association between ß-blocker use and study outcomes. RESULTS: 3,503 patients were included in the study. There were 2,115 (60.4%) patients using ß-blockers at transition. Compared with nonusers, the HR for all-cause mortality within 6 months was 0.79 (95% CI, 0.65-0.94) among users of any ß-blocker and 0.68 (95% CI, 0.53-0.88) among users of metoprolol at transition. There were no observed differences in all-cause or cardiovascular-related hospitalization. LIMITATIONS: The observational nature of our study could not fully account for residual confounding. CONCLUSIONS: Beta-blockers were associated with a lower rate of mortality among incident hemodialysis patients with HF. Similar associations were not observed for hospitalizations within the first 6 months following transition to dialysis.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Hospitalização/estatística & dados numéricos , Falência Renal Crônica/terapia , Mortalidade , Diálise Renal , Antagonistas Adrenérgicos beta/metabolismo , Idoso , Idoso de 80 Anos ou mais , Atenolol/metabolismo , Atenolol/uso terapêutico , Bisoprolol/metabolismo , Bisoprolol/uso terapêutico , Carvedilol/metabolismo , Carvedilol/uso terapêutico , Causas de Morte , Estudos de Coortes , Feminino , Insuficiência Cardíaca/complicações , Humanos , Falência Renal Crônica/complicações , Labetalol/metabolismo , Labetalol/uso terapêutico , Modelos Logísticos , Masculino , Metoprolol/metabolismo , Metoprolol/uso terapêutico , Pessoa de Meia-Idade , Nadolol/metabolismo , Nadolol/uso terapêutico , Modelos de Riscos Proporcionais , Propranolol/metabolismo , Propranolol/uso terapêutico , Fatores de Proteção , Estudos Retrospectivos , Risco , Fatores de Risco
8.
Elife ; 82019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31609201

RESUMO

G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in mammalian cells. Here, we report neuronal excitability of ß-blockers carvedilol and alprenolol at clinically relevant nanomolar concentrations. Carvedilol and alprenolol activate ß2AR, which promote G protein signaling and cAMP/PKA activities without action of G protein receptor kinases (GRKs). The cAMP/PKA activities are restricted within the immediate vicinity of activated ß2AR, leading to selectively enhance PKA-dependent phosphorylation and stimulation of endogenous L-type calcium channel (LTCC) but not AMPA receptor in rat hippocampal neurons. Moreover, we have engineered a mutant ß2AR that lacks the catecholamine binding pocket. This mutant is preferentially activated by carvedilol but not the orthosteric agonist isoproterenol. Carvedilol activates the mutant ß2AR in mouse hippocampal neurons augmenting LTCC activity through cAMP/PKA signaling. Together, our study identifies a mechanism by which ß-blocker-dependent activation of GPCRs promotes spatially restricted cAMP/PKA signaling to selectively target membrane downstream effectors such as LTCC in neurons.


Assuntos
Antagonistas Adrenérgicos beta/metabolismo , Canais de Cálcio Tipo L/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Alprenolol/metabolismo , Animais , Carvedilol/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Ratos
9.
Pharm Res ; 36(12): 170, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31654151

RESUMO

PURPOSE: Many bioactive molecules show a type of solution phase behavior, termed promiscuous aggregation, whereby at micromolar concentrations, colloidal drug-rich aggregates are formed in aqueous solution. These aggregates are known to be a major cause of false positives and false negatives in select enzymatic high-throughput screening assays. The goal of this study was to investigate the impact of drug-rich aggregates on in vitro drug screening metabolism assays. METHODS: Cilnidipine was selected as an aggregate former and its impact on drug metabolism was evaluated against rCYP2D6, rCYP1A2, rCYP2C9 and human liver microsomes. RESULTS: The cilnidipine aggregates were shown to non-specifically inhibit multiple cytochrome P450 enzymes with an IC50 comparable with the IC50 of potent model inhibitors. CONCLUSIONS: This newly demonstrated mode of "promiscuous inhibition" is of great importance as it can lead to false positives during drug metabolism evaluations and thus it needs to be considered in the future to better predict in vivo drug-drug interactions.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Di-Hidropiridinas/química , Microssomos Hepáticos/metabolismo , Proteínas Recombinantes/química , Carvedilol/química , Carvedilol/metabolismo , Coloides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/química , Diclofenaco/metabolismo , Di-Hidropiridinas/metabolismo , Interações Medicamentosas , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , Cinética , Taxa de Depuração Metabólica/efeitos dos fármacos , Fenacetina/química , Fenacetina/metabolismo , Proteínas Recombinantes/metabolismo , Solventes/química , Tamoxifeno/química , Tamoxifeno/metabolismo
10.
Pharmacol Biochem Behav ; 181: 37-45, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998954

RESUMO

There is increasing support for the potential clinical use of compounds that interact with serotonin 2A (5-HT2A) receptors. It is therefore of interest to discover novel compounds that interact with 5-HT2A receptors. In the present study, we used computational chemistry to identify critical ligand structural features of 5-HT2A receptor binding and function. Query of compound databases using those ligand features revealed the adrenergic receptor antagonist carvedilol as a high priority match. As carvedilol is used clinically for cardiovascular diseases, we conducted experiments to assess whether it has any interactions with 5-HT2A receptors. In vitro experiments demonstrated that carvedilol has high nanomolar affinity for 5-HT2A receptors. In vivo experiments demonstrated that carvedilol increases the ethanol-induced loss of the righting reflex and suppresses operant responding in mice, and that these effects are attenuated by pretreatment with the selective 5-HT2A receptor antagonist M100907. Moreover, carvedilol did not induce the head-twitch response in mice, suggesting a lack of psychedelic effects. However, carvedilol did not activate canonical 5-HT2A receptor signaling pathways and antagonized serotonin-mediated signaling. It also reduced the head-twitch response induced by 2,5-Dimethoxy-4-iodoamphetamine, suggesting potential in vivo antagonism, allosteric modulation, or functional bias. These data suggest that carvedilol has functionally relevant interactions with 5-HT2A receptors, providing a novel mechanism of action for a clinically used compound. However, our findings do not clearly delineate the precise mechanism of action of carvedilol at 5-HT2A receptors, and additional experiments are needed to elucidate the role of 5-HT2A receptors in the behavioral and clinical effects of carvedilol.


Assuntos
Antagonistas Adrenérgicos/química , Antagonistas Adrenérgicos/farmacologia , Carvedilol/química , Carvedilol/farmacologia , Química Computacional/métodos , Descoberta de Drogas/métodos , Receptor 5-HT2A de Serotonina/química , Antagonistas Adrenérgicos/administração & dosagem , Antagonistas Adrenérgicos/metabolismo , Anfetaminas/administração & dosagem , Anfetaminas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Carvedilol/administração & dosagem , Carvedilol/metabolismo , Fluorbenzenos/farmacologia , Células HEK293 , Humanos , Dietilamida do Ácido Lisérgico/química , Masculino , Camundongos , Modelos Animais , Modelos Moleculares , Piperidinas/farmacologia , Ligação Proteica , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/farmacologia , Transfecção
11.
Int J Biol Macromol ; 128: 700-709, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30695727

RESUMO

Two novel core-shell fibers which could self-assemble liposome were fabricated based on bioadhesive polymer carboxymethyl chitosan (CMCS) and Sodium carboxymethyl cellulose (CMC-Na), separately. The shell layers were CMCS/PVA and CMC-Na/PVA, respectively, and the core layer was mixture of PVP, Phospholipids (PC) and Carvedilol (Car). The diameter distribution and core/shell structure were examined by SEM and CLSM. FTIR and XRD were also used to characterize the fiber. Self-assembled liposome was observed by TEM, and other parameters like drug encapsulation efficiency was also determined. In vitro adhesive force was conducted to evaluate bioadhesive property of fibers. Dissolution test demonstrated Car was almost completely released within 2 h and presented linear release. The permeation studies across porcine TR146 cell culture and buccal mucosa were carried out, indicating self-assembled liposome and bioadhesive polymer both promoted drug penetration. MTT test showed TR146 cells were safe after incubation with fibers' extraction medium under the concentration of 10 mg/mL. In summary, this design based on self-assembled liposome and core/shell fiber using water-soluble bioadhesive polymer was desirable for Car buccal absorption.


Assuntos
Carboximetilcelulose Sódica/química , Carvedilol/química , Carvedilol/metabolismo , Quitosana/análogos & derivados , Lipossomos/química , Mucosa Bucal/metabolismo , Adesividade , Animais , Linhagem Celular , Quitosana/química , Permeabilidade , Suínos
12.
Drug Dev Ind Pharm ; 45(1): 63-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30230390

RESUMO

OBJECTIVE: To evaluate, for the first time, the use of SCC4 cell monolayers as an alternative sublingual barrier model and study the influence of nanoencapsulation on carvedilol transport across SCC4 cell monolayers. SIGNIFICANCE: The sublingual cavity is an interesting route for administration of drugs with limited oral bioavailability due to hepatic first pass metabolism. By this route, the drug is directly absorbed into blood circulation. In this sense, mucoadhesive carvedilol-loaded nanocapsules (CAR-NC) were previously proposed for the administration of this drug by sublingual route. Carvedilol is used for cardiovascular diseases and suffers metabolism in liver when orally administrated. Nanoencapsulation of carvedilol controlled its permeation across porcine sublingual mucosa. METHODS: Carvedilol-loaded cationic nanocapsules were prepared by interfacial deposition of a preformed polymer. Drug permeation studies were carried out in Transwell® inserts. The integrity of cell monolayers after the drug transport was assessed by transepithelial electric resistance. Compatibility of the CAR-NC with the SCC4 cells was evaluated by the Sulforhodamine B assay. RESULTS: The drug permeated the cell monolayer by a controlled way when nanoencapsulated and this profile had a linear relation with those observed in porcine sublingual mucosa. The integrity of the cell monolayer was maintained after drug permeation and CAR-NC was no cytotoxic to SCC4 cells. CONCLUSION: Nanoencapsulated carvedilol permeated by a controlled and safe way by SCC4 cell monolayer. SCC4 cells monolayers may be used as in vitro model for sublingual drug transport studies in the development of novel formulations.


Assuntos
Anti-Hipertensivos/síntese química , Anti-Hipertensivos/metabolismo , Carvedilol/síntese química , Carvedilol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanocápsulas/química , Administração Sublingual , Anti-Hipertensivos/administração & dosagem , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Carvedilol/administração & dosagem , Humanos , Nanocápsulas/administração & dosagem , Células Tumorais Cultivadas
13.
Biochem Pharmacol ; 155: 298-304, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30028993

RESUMO

Inhibition of mTOR activity (mechanistic target of rapamycin) is an anti-cancer therapeutic strategy. mTOR participates in two functional complexes, mTORC1 and mTORC2. Since mTORC1 is specifically activated in multiple tumors, novel molecules that inhibit mTORC1 could be therapeutically important. To identify potentially novel modulators of mTOR pathways, we screened 1600 small molecule human drugs for mTOR protein binding, using novel biolayer interferometry technology. We identified several small molecules that bound to mTOR protein in a dose-dependent manner, on multiple chemical scaffolds. As mTOR participates in two major complexes, mTORC1 and mTORC2, the functional specificities of the binders were measured by S6Kinase and Akt phosphorylation assays. Three novel 'mTOR general' binders were identified, carvedilol, testosterone propionate, and hydroxyprogesterone, which inhibited both mTORC1 and mTORC2. By contrast, the piperazine drug cinnarizine dose-dependently inhibited mTORC1 but not mTORC2, suggesting it as a novel mTORC1-specific inhibitor. Some of cinnarizine's chemical analogs also inhibited mTORC1 specifically, whereas others did not. Thus we report the existence of a novel target for some related piperazines including cinnarizine and hydroxyzine, i.e. specific inhibition of mTORC1 activity. Since mTOR inhibition is a general anti-cancer strategy, and mTORC1 is specifically activated in some tumors, we suggest the piperazine scaffold, including cinnarizine and hydroxyzine, could be proposed for rational therapy in tumors in which mTORC1 is specifically activated. Related piperazines have shown toxicity to cancer cells in vitro as single agents and in combination chemotherapy. Thus piperazine-based mTOR inhibitors could become a novel chemotherapeutic strategy.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Carvedilol/metabolismo , Carvedilol/farmacologia , Cinarizina/metabolismo , Cinarizina/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Sirolimo/metabolismo , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...