Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Sci Rep ; 14(1): 9497, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664418

RESUMO

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Assuntos
Anormalidades Múltiplas , Proteínas Adaptadoras de Transdução de Sinal , Fissura Palatina , Hipoplasia do Esmalte Dentário , Exoftalmia , Fibroblastos , Fibrose , Gengiva , Osteosclerose , Proteômica , Transdução de Sinais , Fatores de Transcrição , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Humanos , Fator de Crescimento Transformador beta/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Proteômica/métodos , Fibrose/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Osteosclerose/metabolismo , Osteosclerose/genética , Osteosclerose/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hipoplasia do Esmalte Dentário/metabolismo , Hipoplasia do Esmalte Dentário/genética , Hipoplasia do Esmalte Dentário/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Microcefalia/metabolismo , Microcefalia/genética , Microcefalia/patologia , Feminino , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Masculino , Transativadores/metabolismo , Transativadores/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Caseína Quinase I/metabolismo , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Células Cultivadas
2.
Gene ; 915: 148396, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552750

RESUMO

Family with sequence similarity 20 member C (FAM20C) is a Golgi casein kinase that phosphorylates extracellularly-secreted regulatory proteins involved in bone development and mineralization, but its specific role in bone development is still largely unknown. In this study, to examine the specific mechanisms that FAM20C influences bone development, we cross-bred Osx-Cre with FAM20Cflox/flox mice to establish a Osx-Cre; FAM20Cflox/flox knockout (oKO) mouse model; FAM20C was KO in pre-osteoblasts. oKO development was examined at 1-10 weeks, in which compared to control FAM20Cflox/flox, they had lower body weights and bone tissue mineralization. Furthermore, oKO had lower bone volume fractions, thickness, and trabecular numbers, along with higher degrees of trabecular separation. These mice also had decreased femoral metaphyseal cartilage proliferation layer, along with thickened hypertrophic layer and increased apoptotic cell counts. Transcriptomic analysis found that differentially-expressed genes in oKO were concentrated in the osteoclast differentiation pathway, in line with increased osteoclast presence. Additionally, up-regulation of osteoclast-related, and down-regulation of osteogenesis-related genes, were identified, in which the most up-regulated genes were signal regulatory protein ß-1 family (Sirpb1a-c) and mitogen-activated protein kinase 13. Overall, FAM20C KO in pre-osteoblasts leads to abnormal long bone development, likely due to subsequent up-regulation of osteoclast differentiation-associated genes.


Assuntos
Desenvolvimento Ósseo , Proteínas de Ligação ao Cálcio , Caseína Quinase I , Diferenciação Celular , Camundongos Knockout , Osteoblastos , Osteoclastos , Osteogênese , Regulação para Cima , Animais , Camundongos , Desenvolvimento Ósseo/genética , Caseína Quinase I/metabolismo , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Masculino , Feminino
3.
EMBO Rep ; 24(11): e57250, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712432

RESUMO

MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Inativação Gênica , Serina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240249

RESUMO

FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.


Assuntos
Microcefalia , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Microcefalia/genética , Encéfalo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo
5.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207626

RESUMO

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Fosforilação , Retroalimentação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
6.
Neurosci Lett ; 802: 137176, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914045

RESUMO

FAM20C (family with sequence similarity 20-member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. FAM20C loss-of-function mutations cause Raine syndrome in humans, characterized by generalized osteosclerosis, distinctive craniofacial dysmorphism, along with extensive intracranial calcification. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets. In this study, we examined the expression of Fam20c in the mouse brain and investigated brain calcification in Fam20c-deficient mice. Reverse transcription polymerase chain reaction (RT-PCR), Western-blotting and in situ hybridization analyses demonstrated the broad expression of Fam20c in the mouse brain tissue. X-ray and histological analyses showed that the global deletion of Fam20c (mediated by Sox2-cre) resulted in brain calcification in mice after postnatal 3 months and that the calcifications were bilaterally distributed within the brain. There was mild perifocal microgliosis as well as astrogliosis around calcospherites. The calcifications were first observed in the thalamus, and later in the forebrain and hindbrain. Furthermore, brain-specific deletion (mediated by Nestin-cre) of Fam20c in mice also led to cerebral calcification at an older age (postnatal 6 months), but no obvious skeletal or dental defects. Our results suggest that the local loss of FAM20C function in the brain may directly account for intracranial calcification. We propose that FAM20C plays an essential role in maintaining normal brain homeostasis and preventing ectopic brain calcification.


Assuntos
Calcinose , Fissura Palatina , Exoftalmia , Microcefalia , Osteosclerose , Humanos , Camundongos , Animais , Microcefalia/genética , Fissura Palatina/genética , Osteosclerose/diagnóstico por imagem , Osteosclerose/genética , Exoftalmia/genética , Calcinose/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Proteínas de Ligação ao Cálcio
7.
Angew Chem Int Ed Engl ; 62(11): e202217532, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625768

RESUMO

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.


Assuntos
Caseína Quinase I , Transdução de Sinais , Caseína Quinase I/metabolismo , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Humanos
8.
J Genet Genomics ; 50(6): 422-433, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36708808

RESUMO

Gliomas are the most prevalent and aggressive malignancies of the nervous system. Previous bioinformatic studies have revealed the crucial role of the secretory pathway kinase FAM20C in the prediction of glioma invasion and malignancy. However, little is known about the pathogenesis of FAM20C in the regulation of glioma. Here, we construct the full-length transcriptome atlas in paired gliomas and observe that 22 genes are upregulated by full-length transcriptome and differential APA analysis. Analysis of ATAC-seq data reveals that both FAM20C and NPTN are the hub genes with chromatin openness and differential expression. Further, in vitro and in vivo studies suggest that FAM20C stimulates the proliferation and metastasis of glioma cells. Meanwhile, NPTN, a novel cancer suppressor gene, counteracts the function of FAM20C by inhibiting both the proliferation and migration of glioma. The blockade of FAM20C by neutralizing antibodies results in the regression of xenograft tumors. Moreover, MAX, BRD4, MYC, and REST are found to be the potential trans-active factors for the regulation of FAM20C. Taken together, our results uncover the oncogenic role of FAM20C in glioma and shed new light on the treatment of glioma by abolishing FAM20C.


Assuntos
Glioma , Proteínas Nucleares , Humanos , Ativação Transcricional , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glioma/genética , Glioma/patologia , Oncogenes/genética , Epigênese Genética/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo
9.
Nucleic Acids Res ; 50(20): 11924-11937, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321656

RESUMO

Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Ribossômicas , Subunidades Ribossômicas Menores de Eucariotos , Proteínas de Saccharomyces cerevisiae , Humanos , Caseína Quinase I/análise , Caseína Quinase I/metabolismo , Metiltransferases/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Biol Chem ; 298(10): 102339, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931121

RESUMO

Family with sequence similarity 83 A (FAM83A) is a newly discovered proto-oncogene that has been shown to play key roles in various cancers. However, the function of FAM83A in other physiological processes is not well known. Here, we report a novel function of FAM83A in adipocyte differentiation. We used an adipocyte-targeting fusion oligopeptide (FITC-ATS-9R) to deliver a FAM83A-sgRNA/Cas9 plasmid to knockdown Fam83a (ATS/sg-FAM83A) in white adipose tissue in mice, which resulted in reduced white adipose tissue mass, smaller adipocytes, and mitochondrial damage that was aggravated by a high-fat diet. In cultured 3T3-L1 adipocytes, we found loss or knockdown of Fam83a significantly repressed lipid droplet formation and downregulated the expression of lipogenic genes and proteins. Furthermore, inhibition of Fam83a decreased mitochondrial ATP production through blockage of the electron transport chain, associated with enhanced apoptosis. Mechanistically, we demonstrate FAM83A interacts with casein kinase 1 (CK1) and promotes the permeability of the mitochondrial outer membrane. Furthermore, loss of Fam83a in adipocytes hampered the formation of the TOM40 complex and impeded CK1-driven lipogenesis. Taken together, these results establish FAM83A as a critical regulator of mitochondria maintenance during adipogenesis.


Assuntos
Adipócitos Brancos , Adipogenia , Caseína Quinase I , Mitocôndrias , Proteínas de Neoplasias , Proto-Oncogenes , Animais , Camundongos , Células 3T3-L1 , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia/genética , Caseína Quinase I/metabolismo , Diferenciação Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
12.
Sci Rep ; 12(1): 11819, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821396

RESUMO

The casein kinase 1 (CK1) family of serine/threonine protein kinases is involved in diverse cellular events at discrete subcellular compartments. FAM83H acts as a scaffold protein that recruits CK1 to the keratin cytoskeleton or to the nuclear speckles, which are storage sites for splicing factors. We determined the amino acid region of FAM83H required for recruiting CK1 to the keratin cytoskeleton. The subcellular localization of mutant FAM83H proteins with deletions of amino acid residues at different positions was evaluated via immunofluorescence. FAM83H mutants with deleted C-terminal residues 1134-1139, which are conserved among vertebrates, lost the ability to localize and recruit CK1 to the keratin cytoskeleton, suggesting that these residues are required for recruiting CK1 to the keratin cytoskeleton. The deletion of these residues (1134-1139) translocated FAM83H and CK1 to the nuclear speckles. Amino acid residues 1 to 603 of FAM83H were determined to contain the region responsible for the recruitment of CK1 to the nuclear speckles. Our results indicated that FAM83H recruits CK1 preferentially to the keratin cytoskeleton and alternatively to the nuclear speckles.


Assuntos
Caseína Quinase I , Queratinas , Aminoácidos/metabolismo , Animais , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Caseína Quinases/metabolismo , Citoesqueleto/metabolismo , Queratinas/genética , Queratinas/metabolismo , Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo
13.
Gastroenterology ; 163(4): 875-890, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700772

RESUMO

BACKGROUND & AIMS: Dysplasia carries a high risk of cancer development; however, the cellular mechanisms for dysplasia evolution to cancer are obscure. We have previously identified 2 putative dysplastic stem cell (DSC) populations, CD44v6neg/CD133+/CD166+ (double positive [DP]) and CD44v6+/CD133+/CD166+ (triple positive [TP]), which may contribute to cellular heterogeneity of gastric dysplasia. Here, we investigated functional roles and cell plasticity of noncancerous Trop2+/CD133+/CD166+ DSCs initially developed in the transition from precancerous metaplasia to dysplasia in the stomach. METHODS: Dysplastic organoids established from active Kras-induced mouse stomachs were used for transcriptome analysis, in vitro differentiation, and in vivo tumorigenicity assessments of DSCs. Cell heterogeneity and genetic alterations during clonal evolution of DSCs were examined by next-generation sequencing. Tissue microarrays were used to identify DSCs in human dysplasia. We additionally evaluated the effect of casein kinase 1 alpha (CK1α) regulation on the DSC activities using both mouse and human dysplastic organoids. RESULTS: We identified a high similarity of molecular profiles between DP- and TP-DSCs, but more dynamic activities of DP-DSCs in differentiation and survival for maintaining dysplastic cell lineages through Wnt ligand-independent CK1α/ß-catenin signaling. Xenograft studies demonstrated that the DP-DSCs clonally evolve toward multiple types of gastric adenocarcinomas and promote cancer cell heterogeneity by acquiring additional genetic mutations and recruiting the tumor microenvironment. Last, growth and survival of both mouse and human dysplastic organoids were controlled by targeting CK1α. CONCLUSIONS: These findings indicate that the DSCs are de novo gastric cancer-initiating cells responsible for neoplastic transformation and a promising target for intervention in early induction of gastric cancer.


Assuntos
Lesões Pré-Cancerosas , Neoplasias Gástricas , Animais , Caseína Quinase I/metabolismo , Plasticidade Celular , Transformação Celular Neoplásica/patologia , Mucosa Gástrica/patologia , Humanos , Hiperplasia/patologia , Ligantes , Camundongos , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral , beta Catenina/metabolismo
14.
Plant Physiol ; 189(4): 2091-2109, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522025

RESUMO

High temperature (HT) causes male sterility and decreases crop yields. Our previous works have demonstrated that sugar and auxin signaling pathways, Gossypium hirsutum Casein kinase I (GhCKI), and DNA methylation are all involved in HT-induced male sterility in cotton. However, the signaling mechanisms leading to distinct GhCKI expression patterns induced by HT between HT-tolerant and HT-sensitive cotton anthers remain largely unknown. Here, we identified a GhCKI promoter (ProGhCKI) region that functions in response to HT in anthers and found the transcription factor GhMYB4 binds to this region to act as an upstream positive regulator of GhCKI. In the tapetum of early-stage cotton anthers, upregulated expression of GhMYB4 under HT and overexpressed GhMYB4 under normal temperature both led to severe male sterility phenotypes, coupled with enhanced expression of GhCKI. We also found that GhMYB4 interacts with GhMYB66 to form a heterodimer to enhance its binding to ProGhCKI. However, GhMYB66 showed an expression pattern similar to GhMYB4 under HT but did not directly bind to ProGhCKI. Furthermore, HT reduced siRNA-mediated CHH DNA methylations in the GhMYB4 promoter, which enhanced the expression of GhMYB4 in tetrad stage anthers and promoted the formation of the GhMYB4/GhMYB66 heterodimer, which in turn elevated the transcription of GhCKI in the tapetum, leading to male sterility. Overall, we shed light on the GhMYB66-GhMYB4-GhCKI regulatory pathway in response to HT in cotton anthers.


Assuntos
Gossypium , Infertilidade Masculina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Temperatura Alta , Humanos , Masculino , Temperatura
15.
Elife ; 112022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404228

RESUMO

Autophagy receptor (or adaptor) proteins facilitate lysosomal destruction of various organelles in response to cellular stress, including nutrient deprivation. To what extent membrane-resident autophagy receptors also respond to organelle-restricted cues to induce selective autophagy remains poorly understood. We find that latent activation of the yeast pexophagy receptor Atg36 by the casein kinase Hrr25 in rich media is repressed by the ATPase activity of Pex1/6, the catalytic subunits of the exportomer AAA+ transmembrane complex enabling protein import into peroxisomes. Quantitative proteomics of purified Pex3, an obligate Atg36 coreceptor, support a model in which the exportomer tail anchored to the peroxisome membrane represses Atg36 phosphorylation on Pex3 without assistance from additional membrane factors. Indeed, we reconstitute inhibition of Atg36 phosphorylation in vitro using soluble Pex1/6 and define an N-terminal unstructured region of Atg36 that enables regulation by binding to Pex1. Our findings uncover a mechanism by which a compartment-specific AAA+ complex mediating organelle biogenesis and protein quality control staves off induction of selective autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Caseína Quinase I/metabolismo , Macroautofagia , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Cell Rep ; 39(2): 110647, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417721

RESUMO

Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.


Assuntos
Morte Celular , Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Caseína Quinase I/metabolismo , Membrana Celular/metabolismo , Lisossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
17.
J Biol Chem ; 298(6): 101986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487243

RESUMO

Aberrant activation or suppression of WNT/ß-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the ß-catenin-dependent and ß-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated ß-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and ß-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.


Assuntos
Caseína Quinase I , Via de Sinalização Wnt , beta Catenina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Curr Med Chem ; 29(27): 4698-4737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35232339

RESUMO

Casein kinase 1 (CK1) belongs to the serine-threonine kinase family and is expressed in all eukaryotic organisms. At least six human isoforms of CK1 (termed α, γ1-3, δ and ε) have been cloned and characterized. CK1δ isoform modulates several physiological processes, including DNA damage repair, circadian rhythm, cellular proliferation and apoptosis. Therefore, CK1δ dysfunction may trigger diverse pathologies, such as cancer, inflammation and central nervous system disorders. Overexpression and aberrant activity of CK1δ have been connected to hyperphosphorylation of key proteins implicated in the development of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases and Amyotrophic Lateral Sclerosis. Thus, CK1δ inhibitors have attracted attention as potential drugs for these pathologies and several compounds have been synthesized or isolated from natural sources to be evaluated for their CK1δ inhibitory activity. Here we report a comprehensive review on the development of CK1δ inhibitors, with a particular emphasis on structure-activity relationships and computational studies, which provide useful insight for the design of novel inhibitors.


Assuntos
Caseína Quinase Idelta , Doenças Neurodegenerativas , Caseína Quinase I/metabolismo , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Ritmo Circadiano/fisiologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Isoformas de Proteínas
19.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217617

RESUMO

Circadian clocks are timing systems that rhythmically adjust physiology and metabolism to the 24-h day-night cycle. Eukaryotic circadian clocks are based on transcriptional-translational feedback loops (TTFLs). Yet TTFL-core components such as Frequency (FRQ) in Neurospora and Periods (PERs) in animals are not conserved, leaving unclear how a 24-h period is measured on the molecular level. Here, we show that CK1 is sufficient to promote FRQ and mouse PER2 (mPER2) hyperphosphorylation on a circadian timescale by targeting a large number of low-affinity phosphorylation sites. Slow phosphorylation kinetics rely on site-specific recruitment of Casein Kinase 1 (CK1) and access of intrinsically disordered segments of FRQ or mPER2 to bound CK1 and on CK1 autoinhibition. Compromising CK1 activity and substrate binding affects the circadian clock in Neurospora and mammalian cells, respectively. We propose that CK1 and the clock proteins FRQ and PERs form functionally equivalent, phospho-based timing modules in the core of the circadian clocks of fungi and animals.


Assuntos
Proteínas CLOCK/metabolismo , Caseína Quinase I/metabolismo , Relógios Circadianos , Neurospora crassa/metabolismo , Animais , Cinética , Camundongos , Fosforilação
20.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191833

RESUMO

Liquid-liquid phase separation (LLPS) plays important roles in forming cellular membraneless organelles. However, how host factors regulate LLPS of viral proteins during negative-sense RNA (NSR) virus infection is largely unknown. Here, we used barley yellow striate mosaic virus (BYSMV) as a model to demonstrate regulation of host casein kinase 1 (CK1) in phase separation and infection of NSR viruses. We first found that the BYSMV phosphoprotein (P) formed spherical granules with liquid properties and recruited viral nucleotide (N) and polymerase (L) proteins in vivo. Moreover, the P-formed granules were tethered to the ER/actin network for trafficking and fusion. BYSMV P alone formed droplets and incorporated the N protein and the 5' trailer of genomic RNA in vitro. Interestingly, phase separation of BYSMV P was inhibited by host CK1-dependent phosphorylation of an intrinsically disordered P protein region. Genetic assays demonstrated that the unphosphorylated mutant of BYSMV P exhibited condensed phase, which promoted viroplasm formation and virus replication. Whereas, the phosphorylation-mimic mutant existed in diffuse phase state for virus transcription. Collectively, our results demonstrate that host CK1 modulates phase separation of the viral P protein and virus infection.


Assuntos
Caseína Quinase I/metabolismo , Fosfoproteínas/metabolismo , Rhabdoviridae/fisiologia , Replicação Viral/fisiologia , Actinas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosforilação , Doenças das Plantas/virologia , Infecções por Rhabdoviridae/virologia , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...