Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672517

RESUMO

Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.


Assuntos
Adipogenia , Proteína 7 Relacionada à Autofagia , Autofagia , Caspase 1 , Inflamação , Obesidade , Adipogenia/genética , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Camundongos , Caspase 1/metabolismo , Caspase 1/genética , Caspase 1/deficiência , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Células 3T3-L1 , Camundongos Knockout
2.
Vet Microbiol ; 268: 109411, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35395546

RESUMO

Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, SEZ) is a zoonotic bacterial pathogen that can cause various inflammation, including pneumonia. As the most abundant leukocytes in the circulation, neutrophils are the first wave of leukocytes to arrive in the lung upon infection. This study aims to evaluate the effect of caspase-1 on the host response to SEZ infection in a mouse model. Intranasal exposure to SEZ induced the expression of caspase-1 in wild-type mice lung, and increased the number of neutrophils in the alveolar cavity and alveolar wall. In addition, caspase-1 deficiency reduced the transcription levels of IL-1α, IL-1ß, IL-6, and TNF-α in the lungs of infected mice, which was accompanied by decreased recruitment of pulmonary neutrophils. Moreover, knocking out caspase-1 decreased the bactericidal activity of neutrophils and promoted the pulmonary bacterial load. In line with this, the mortality of caspase-1-/- mice infected with SEZ was significantly increased compared with those of caspase-1+/+ mice. Collectively, recruiting neutrophils and enhancing the bactericidal ability of neutrophils are important means for caspase-1 to promote bacterial clearance.


Assuntos
Caspase 1 , Neutrófilos , Infecções Estreptocócicas , Streptococcus equi , Animais , Caspase 1/deficiência , Caspase 1/genética , Modelos Animais de Doenças , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária
3.
Cell Signal ; 85: 110039, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991613

RESUMO

BACKGROUND: Caspase-1 knockout mice (Casp1KO) are protected from Acute Kidney Injury (AKI) after warm ischemia/reperfusion injury in non-transplant models. Since Caspase-1 plays a central role as an inflammatory response initiator, we hypothesized that Casp1KO mice would be protected from AKI following transplant. METHODS: Renal tubular cells (RTECs) were subjected to cold storage and rewarming (CS/REW). C57Bl/6 J wild type or Casp1KO kidneys were subjected to CI for 30 min and then transplanted into wild type recipients (CI + Txp). The recipients underwent bilateral native nephrectomy at the time of transplant. Serum creatinine (sCr) was measured 24 h after native nephrectomy to assess transplant function. RESULTS: We found that RTECs subjected to CS/REW had significantly increased expression of the Caspase-1 and inflammasome protein NLRP1. Wild type kidneys subjected to CI + Txp into wild type recipients also demonstrated significantly increased Caspase-1 and NLRP1 protein expression compared to kidneys transplanted from Casp1KO donors into wild type recipients. Caspase-1 deletion results in significantly decreased RTEC apoptosis in transplanted Casp1KO vs WT kidneys. Surprisingly, however, renal function, ATN scores including brush border injury, cast formation and tubular simplification were similar in both groups and not significantly different. CONCLUSIONS: Our data suggest that other triggers of inflammation and programmed necrosis may need to be inhibited in addition to attenuating Caspase-1 to fully prevent AKI after kidney transplant. Importantly, requirements may be distinct for AKI induced by transplantation as opposed to other transient models such as the clamp model of AKI.


Assuntos
Injúria Renal Aguda , Apoptose , Caspase 1/deficiência , Traumatismo por Reperfusão , Animais , Caspase 1/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Traumatismo por Reperfusão/metabolismo
4.
Clin Sci (Lond) ; 135(5): 687-701, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33620070

RESUMO

Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1ß and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1ß production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5'-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.


Assuntos
Venenos de Crotalídeos/toxicidade , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trifosfato de Adenosina , Animais , Bothrops , Caspase 1/deficiência , Linhagem Celular , Humanos , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Doenças Musculares/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Receptores Purinérgicos P2X7
5.
Cell Mol Life Sci ; 78(6): 3073-3085, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33231721

RESUMO

Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1ß, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1ß release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.


Assuntos
Aquaporina 3/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aquaporina 3/antagonistas & inibidores , Aquaporina 3/genética , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Glicerol/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nigericina/farmacologia , Compostos Organoáuricos/química , Compostos Organoáuricos/metabolismo , Potássio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735843

RESUMO

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Necroptose/imunologia , Piroptose/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 12/deficiência , Caspase 12/genética , Caspase 8/genética , Caspases Iniciadoras/deficiência , Caspases Iniciadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
7.
Mater Sci Eng C Mater Biol Appl ; 112: 110965, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409093

RESUMO

The apoptosis-associated Speck-like protein containing a caspase-1 recruitment domain (ASC), present in inflammasomes, regulates inflammation events and is involved in osteogenic phenotype. Nevertheless, its function in bone repair induced by bone substitute biomaterials is unclear. This study aimed to unveil the role of ASC on osteoprogenitor and tissue response to stoichiometric-hydroxyapatite (HA), nanostructured carbonated-hydroxyapatite (CHA), and CHA containing 5% Strontium (SrCHA), characterized previously by XRD, uXRF-SR, and FTIR spectroscopy implants. Thereafter, conditioned media by the biomaterials were used later to treat pre-osteoblasts and an osteogenic stimulus was shown in response to the materials, with higher expression of Runx2, Osterix, ALP, and Collagen 1a1 genes, with significant involvement of inflammatory-related genes. Thus, to better address the involvement of inflammasome, primary cells obtained from both genotypes [Wild-Type (WT) and ASC Knockout (ASC-KO) mice] were subjected to conditioned media up to 7 days, and our data reinforces both HA and CHA induces lower levels of alkaline phosphatase (ALP) than SrCHA, considering both genotypes (p < 0.01), and ASC seems contribute with osteogenic stimulus promoted by SrCHA. Complimentarily, the biomaterials were implanted into both subcutaneous and bone defects in tibia. Histological analysis on 28 days after implantation of biomaterials into mice's subcutaneous tissue revealed moderate inflammatory response to them. Both histomorphometry and µCT analysis of tibias indicated that the biomaterials did not reverse the delay in bone repair of ASC KO, reinforcing the involvement of ASC on bone regeneration and bone de novo deposition. Also, the bone density in CHA was >2-fold higher in WT than ASC-KO samples. HA was virtually not resorbed throughout the experimental periods, in opposition to CHA in the WT group. CHA reduced to half-area after 28 days, and the bone deposition was higher in CHA for WT mice than HA. Taken together, our results show that biomaterials did not interfere with the healing pattern of the ASC KO, but CHA promoted higher bone deposition in the WT group, probably due to its greater biodegradability. These results reinforce the importance of ASC during bone de novo deposition and healing.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Caspase 1/química , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/diagnóstico por imagem , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Carbonatos/química , Caspase 1/deficiência , Caspase 1/genética , Células Cultivadas , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Durapatita/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanoestruturas/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Estrôncio/química , Tíbia/diagnóstico por imagem , Tíbia/patologia
8.
Nature ; 580(7805): 647-652, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350463

RESUMO

Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis1-4. We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/patologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/deficiência , Caspase 1/metabolismo , Morte Celular , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Ligação a Fosfato/metabolismo
9.
Life Sci Alliance ; 3(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32345661

RESUMO

Caspase-1 drives a lytic inflammatory cell death named pyroptosis by cleaving the pore-forming cell death executor gasdermin-D (GSDMD). Gsdmd deficiency, however, only delays cell lysis, indicating that caspase-1 controls alternative cell death pathways. Here, we show that in the absence of GSDMD, caspase-1 activates apoptotic initiator and executioner caspases and triggers a rapid progression into secondary necrosis. GSDMD-independent cell death required direct caspase-1-driven truncation of Bid and generation of caspase-3 p19/p12 by either caspase-8 or caspase-9. tBid-induced mitochondrial outer membrane permeabilization was also required to drive SMAC release and relieve inhibitor of apoptosis protein inhibition of caspase-3, thereby allowing caspase-3 auto-processing to the fully active p17/p12 form. Our data reveal that cell lysis in inflammasome-activated Gsdmd-deficient cells is caused by a synergistic effect of rapid caspase-1-driven activation of initiator caspases-8/-9 and Bid cleavage, resulting in an unusually fast activation of caspase-3 and immediate transition into secondary necrosis. This pathway might be advantageous for the host in counteracting pathogen-induced inhibition of GSDMD but also has implications for the use of GSDMD inhibitors in immune therapies for caspase-1-dependent inflammatory disease.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Caspase 1/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Ligação a Fosfato/deficiência , Transdução de Sinais/genética , Animais , Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspase 1/genética , Células Cultivadas , Edição de Genes , Técnicas de Inativação de Genes , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Necrose/genética , Necrose/metabolismo , Proteínas de Ligação a Fosfato/genética , Piroptose/genética , Transfecção
10.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295905

RESUMO

We demonstrate that female C57BL/6J mice are susceptible to a transient lower genital tract infection with MmuPV1 mouse papillomavirus and display focal histopathological abnormalities resembling those of human papillomavirus (HPV) infection. We took advantage of strains of genetically deficient mice to study in vivo the role of innate immune signaling in the control of papillomavirus. At 4 months, we sacrificed MmuPV1-infected mice and measured viral 757/3139 spliced transcripts by TaqMan reverse transcription-PCR (RT-PCR), localization of infection by RNAscope in situ hybridization, and histopathological abnormities by hematoxylin and eosin (H&E) staining. Among mice deficient in receptors for pathogen-associated molecular patterns, MyD88-/- and STING-/- mice had 1,350 and 80 copies of spliced transcripts/µg RNA, respectively, while no viral expression was detected in MAVS-/- and Ripk2-/- mice. Mice deficient in an adaptor molecule, STAT1-/-, for interferon signaling had 46,000 copies/µg RNA. Among mice with targeted deficiencies in the inflammatory response, interleukin-1 receptor knockout (IL-1R-/-) and caspase-1-/- mice had 350 and 30 copies/µg RNA, respectively. Among mice deficient in chemokine receptors, CCR6-/- mice had 120 copies/µg RNA, while CXCR2-/- and CXCR3-/- mice were negative. RNAscope confirmed focal infection in MyD88-/-, STAT1-/-, and CCR6-/- mice but was negative for other gene-deficient mice. Histological abnormalities were seen only in the latter mice. Our findings and the literature support a working model of innate immunity to papillomaviruses involving the activation of a MyD88-dependent pathway and IL-1 receptor signaling, control of viral replication by interferon-stimulated genes, and clearance of virus-transformed dysplastic cells by the action of the CCR6/CCL20 axis.IMPORTANCE Papillomaviruses infect stratified squamous epithelia, and the viral life cycle is linked to epithelial differentiation. Additionally, changes occur in viral and host gene expression, and immune cells are activated to modulate the infectious process. In vitro studies with keratinocytes cannot fully model the complex viral and host responses and do not reflect the contribution of local and migrating immune cells. We show that female C57BL/6J mice are susceptible to a transient papillomavirus cervicovaginal infection, and mice deficient in select genes involved in innate immune responses are susceptible to persistent infection with variable manifestations of histopathological abnormalities. The results of our studies support a working model of innate immunity to papillomaviruses, and the model provides a framework for more in-depth studies. A better understanding of mechanisms of early viral clearance and the development of approaches to induce clearance will be important for cancer prevention and the treatment of HPV-related diseases.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , RNA Mensageiro/imunologia , RNA Viral/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Processamento Alternativo , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/imunologia , Colo do Útero/imunologia , Colo do Útero/virologia , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Papillomaviridae/crescimento & desenvolvimento , Papillomaviridae/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , RNA Mensageiro/genética , RNA Viral/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/deficiência , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Receptores CCR6/deficiência , Receptores CCR6/genética , Receptores CCR6/imunologia , Receptores CXCR3/deficiência , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Receptores de Interleucina-8B/deficiência , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/imunologia , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Vagina/imunologia , Vagina/virologia
11.
J Neuroinflammation ; 17(1): 114, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32290861

RESUMO

BACKGROUND: A craniotomy is required to access the brain for tumor resection or epilepsy treatment, and despite precautionary measures, infectious complications occur at a frequency of 1-3%. Approximately half of craniotomy infections are caused by Staphylococcus aureus (S. aureus) that forms a biofilm on the bone flap, which is recalcitrant to antibiotics. Our prior work in a mouse model of S. aureus craniotomy infection revealed a critical role for myeloid differentiation factor 88 (MyD88) in bacterial containment and pro-inflammatory mediator production. Since numerous receptors utilize MyD88 as a signaling adaptor, the current study examined the importance of Toll-like receptor 2 (TLR2) and TLR9 based on their ability sense S. aureus ligands, namely lipoproteins and CpG DNA motifs, respectively. We also examined the role of caspase-1 based on its known association with TLR signaling to promote IL-1ß release. METHODS: A mouse model of craniotomy-associated biofilm infection was used to investigate the role of TLR2, TLR9, and caspase-1 in disease progression. Wild type (WT), TLR2 knockout (KO), TLR9 KO, and caspase-1 KO mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the galea, brain, and bone flap. In addition, the role of TLR2-dependent signaling during microglial/macrophage crosstalk with myeloid-derived suppressor cells (MDSCs) was examined. RESULTS: TLR2, but not TLR9, was important for preventing S. aureus outgrowth during craniotomy infection, as revealed by the elevated bacterial burden in the brain, galea, and bone flap of TLR2 KO mice concomitant with global reductions in pro-inflammatory mediator production compared to WT animals. Co-culture of MDSCs with microglia or macrophages, to model interactions in the brain vs. galea, respectively, also revealed a critical role for TLR2 in triggering pro-inflammatory mediator production. Similar to TLR2, caspase-1 KO animals also displayed increased S. aureus titers coincident with reduced pro-inflammatory mediator release, suggestive of pathway cooperativity. Treatment of caspase-1 KO mice with IL-1ß microparticles significantly reduced S. aureus burden in the brain and galea compared to empty microparticles, confirming the critical role of IL-1ß in limiting S. aureus outgrowth during craniotomy infection. CONCLUSIONS: These results demonstrate the existence of an initial anti-bacterial response that depends on both TLR2 and caspase-1 in controlling S. aureus growth; however, neither pathway is effective at clearing infection in the WT setting, since craniotomy infection persists when both molecules are present.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caspase 1/deficiência , Contenção de Riscos Biológicos/métodos , Craniotomia/efeitos adversos , Infecção da Ferida Cirúrgica/metabolismo , Receptor 2 Toll-Like/deficiência , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Infecção da Ferida Cirúrgica/etiologia
12.
Cell Death Dis ; 11(1): 78, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001671

RESUMO

Preeclampsia (PE) remains a leading cause of maternal and neonatal morbidity and mortality. Numerous studies have shown that women with PE develop autoantibody, termed angiotensin II type 1 receptor autoantibody (AT1-AA), and key features of the disease result from it. Emerging evidence has indicated that inflammatory cell necrosis, such as pyroptosis, could lead to autoantigen exposure and stimulate autoantibody production. Caspase-1, the central enzyme of inflammasome and key target of pyroptosis, may play roles in AT1R exposure and AT1-AA production. Exploring endogenous regulator that could inhibit AT1-AA production by targeting pyroptosis will be essential for treating PE. Lipoxin A4 (LXA4), endogenous dual anti-inflammatory and proresolving lipid mediator, may inhibit AT1-AA production via modulating caspase-1. Thus, we explore whether caspase-1 is essential for AT1-AA production and LXA4 inhibits AT1-AA via modulating caspase-1. PE patients and mice developed AT1-AA associated with caspase-1 activation. Caspase-1 deletion leaded to AT1-AA decrease in PE mice. Consistent with these findings, we confirmed caspase-1 activation, trophoblast pyroptosis and AT1R exposure in PE mice and trophoblast model, while caspase-1 deficiency showed decreased trophoblast pyroptosis and AT1R exposure in vitro and in vivo. Interestingly, LXA4 could suppress AT1-AA production via regulating caspase-1 as well as enhancing phagocytosis of dead trophoblasts by macrophages. These results suggest that caspase-1 promotes AT1-AA production via inducing trophoblast pyroptosis and AT1R exposure, while LXA4 suppresses AT1-AA production via modulating caspase-1, supporting caspase-1 serving as a therapeutic target for attenuating AT1-AA and LXA4 protecting patients from AT1-AA and PE.


Assuntos
Autoanticorpos/metabolismo , Caspase 1/metabolismo , Lipoxinas/farmacologia , Pré-Eclâmpsia/imunologia , Piroptose/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/imunologia , Trofoblastos/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina , Animais , Autoanticorpos/genética , Autoanticorpos/imunologia , Caspase 1/sangue , Caspase 1/deficiência , Caspase 1/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Lipoxinas/sangue , Lipoxinas/deficiência , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/metabolismo , Gravidez , Piroptose/genética , Piroptose/imunologia , RNA Interferente Pequeno , Receptor Tipo 1 de Angiotensina/sangue , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Baço/crescimento & desenvolvimento , Baço/imunologia , Baço/patologia , Trofoblastos/metabolismo
13.
Inflammation ; 43(3): 1054-1064, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32002713

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Inflammatory pathways contribute to disease pathogenesis; however, regulation of the underlying mechanism is not completely understood. IL-1ß, a pro-inflammatory cytokine, participates in the development and progression of NAFLD. To become bioactive, IL-1ß requires enzymatic processing. Mechanisms that activate IL-1ß include the classical NLRP3 inflammasome-caspase-1 and the neutrophil serine proteases, neutrophil elastase, and proteinase-3. Several studies have shown that both caspase-1 and the neutrophil serine proteases are important for NAFLD development. However, it is unknown whether these pathways interact and if they have a synergistic effect in promoting NAFLD. In the present study, we developed a novel and unique mouse model by intercrossing caspase-1/11 knockout mice with neutrophil elastase/proteinase-3 double knockout mice. Subsequently, these mice were examined regarding the development of high-fat diet-induced NAFLD. Our results show that mice deficient in caspase-1, neutrophil elastase, and proteinase-3 were protected from developing diet-induced weigh gain, liver steatosis, and adipose tissue inflammation when compared with controls. We conclude that pathways that process pro-IL-1ß to bioactive IL-1ß play an important role in promoting the development of NAFLD and obesity-induced inflammation. Targeting these pathways could have a therapeutic potential in patients with NAFLD.


Assuntos
Caspase 1/deficiência , Interleucina-1beta/antagonistas & inibidores , Elastase de Leucócito/deficiência , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Serina Endopeptidases/deficiência , Animais , Caspase 1/genética , Dieta Hiperlipídica/efeitos adversos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Elastase de Leucócito/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/genética , Obesidade/prevenção & controle , Serina Endopeptidases/genética
14.
Microbes Infect ; 22(1): 40-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31430539

RESUMO

Receptor interacting protein kinase 3 (Ripk3) is a signal relay protein involved in initiation of programmed cell death (necroptosis) and modulation of inflammasome activation. While caspase 1 and 11 are pro-inflammatory caspases responsible for unleashing inflammation and cell death by enzymatic activation of the executioners of inflammation and cell death (pyroptosis). Upon Salmonella infection, the host mounts a pro-inflammatory response which require Ripk3 and Caspase1/11. Here we show that bone marrow derived macrophages with combined deficiency of Ripk3 and Casp1/11 are highly resistant to Salmonella induced cell death, and that these macrophages show an anti-inflammatory cytokine profile. We confirm what was previously known that mice deficient in Casp1/11 have impaired ability to control Salmonella burden, and that the absence of Ripk3 alone does not influence the innate immune responses to Salmonella infection. However, we describe a synergistic role of Ripk3 and Casp1/11 in regulating Salmonella in vivo burden and that Ripk3-dependent host protection in the absence of Casp1/11 is evident during infection by sifA-expressing Salmonella. In summary, we show that the Ripk3 protection to Salmonella infection is obscured by presence of Caspase 1/11 and that the Ripk3-dependent protection requires a phagosome-bound Salmonella.


Assuntos
Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Inflamassomos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caspase 1/deficiência , Caspases Iniciadoras/deficiência , Morte Celular , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Salmonella/fisiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia
15.
Sci Rep ; 9(1): 6456, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015500

RESUMO

Converging evidence supports the involvement of pro-inflammatory pathways and the gut microbiome in major depressive disorder (MDD). Pre-clinical and clinical studies suggest that decreasing pro-inflammatory signaling may provide clinical benefit in MDD. In this study, we used the chronic unpredictable stress (CUS) paradigm to assess whether mice lacking the pro-inflammatory caspase 1, interferon gamma-receptor, and nitric oxide synthase (Casp1, Ifngr, Nos2)-/- present altered depressive- and anxiety-like behaviour at baseline and in response to CUS. In comparison to wild-type (wt) mice, (Casp1, Ifngr, Nos2)-/- mice displayed decreased depressive- and anxiety-like behaviour, and increased hedonic-like behaviour and locomotor activity at baseline, and resistance to developing anhedonic-like behaviour and a heightened emotional state following stress. Plasma levels of ACTH and CORT did not differ between the triple knockout and wt mice following stress. The faecal microbiome of (Casp1, Ifngr, Nos2)-/- mice differed from that of wt mice at baseline and displayed reduced changes in response to chronic stress. Our results demonstrate that simultaneous deficit in multiple pro-inflammatory pathways has antidepressant-like effects at baseline, and confers resilience to stress-induced anhedonic-like behaviour. Moreover, accompanying changes in the gut microbiome composition suggest that CASP1, IFNGR and NOS2 play a role in maintaining microbiome homeostasis.


Assuntos
Transtornos de Ansiedade , Comportamento Animal , Caspase 1/deficiência , Transtorno Depressivo Maior , Microbioma Gastrointestinal , Óxido Nítrico Sintase Tipo II/deficiência , Receptores de Interferon/deficiência , Animais , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/microbiologia , Transtornos de Ansiedade/fisiopatologia , Caspase 1/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/microbiologia , Transtorno Depressivo Maior/fisiopatologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Interferon/metabolismo , Receptor de Interferon gama
16.
PLoS One ; 14(1): e0210336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653583

RESUMO

Metal hypersensitivity has been recognized as an adverse biologic reaction that can compromise total joint arthroplasty (TJA) performance. However, the etiology of metal hypersensitivity responses in TJAs remains unclear. Metal implant debris is known to act as a danger signal that drives NLRP3 inflammasome activation. It remains unknown if implant debris induced inflammasome activation regulates T cell lineage in TJA metal hypersensitivity responses. In this study, we show both in vivo and in vitro that the pathogenesis of metal hypersensitivity responses to implant debris are largely dependent on activation of the inflammasome/caspase-1 pathway and subsequent production of IL-17A/F by CD4+ T cells. Inhibiting either the inflammasome pathway or IL-17A bioactivity in vivo and in vitro (in vivo using NLRP3 and Caspase-1 deficient mice or in vitro using blocking agents such as Capase-1 inhibitor, IL-1Ra and anti-IL-17A), significantly (p<0.05) mitigated metal-DTH paw inflammation as well as lymphocyte cytokine (IFN-γ and IL-17) and proliferation responses in metal-sensitized mice and primary human PBMCs. This study provides mechanistic insight into how in vivo exposure to orthopedic implant debris, and metals in general, elicits NLRP3 inflammasome activation that mediates the generation of IL-17A/F producing CD4+ T cells, leading to metal-delayed type hypersensitivity reactions.


Assuntos
Hipersensibilidade Tardia/etiologia , Inflamassomos/imunologia , Prótese Articular/efeitos adversos , Metais/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Células Th17/imunologia , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/imunologia , Células Cultivadas , Citocinas/biossíntese , Feminino , Humanos , Hipersensibilidade Tardia/imunologia , Técnicas In Vitro , Interleucina-17/antagonistas & inibidores , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Níquel/efeitos adversos , Falha de Prótese/etiologia , Transdução de Sinais
17.
Cell Death Differ ; 26(6): 1124-1137, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30154447

RESUMO

Caspases exert critical functions in diverse cell death pathways, including apoptosis and pyroptosis, but some caspases also have roles in the processing of cytokines into their functional forms during inflammation. The roles of many caspases have been unravelled by the generation of knockout mice, but still very little is known about the overlapping functions of caspases as only a few studies report on double or triple caspase knockout mice. For example, the functions of caspase-12 in cell death and inflammation, on its own or overlapping with the functions of caspase-1 and caspase-11, are only poorly understood. Therefore, we generated a novel mutant mouse strain lacking all three inflammatory caspases, caspases-1, -11 and -12. Analysis under steady state conditions showed no obvious differences between caspase-1/11/12-/- and wildtype (WT) mice. Since caspases-1 and -11 are involved in endotoxic shock, we analysed the response of caspase-1/11/12-/- mice to high-dose LPS injection. Interestingly, we could not detect any differences in responses between caspase-1/11/12-/- mice vs. caspase-1/11 double knockout mice. Furthermore, cell lines generated from caspase-1/11/12-/- mice showed no differences in their apoptotic or necroptotic responses to a diverse set of cytotoxic drugs in vitro when compared to WT cells. Importantly, these drugs also included ER stress-inducing agents, such as thapsigargin and tunicamycin, a form of cell death for which a critical pro-apoptotic function of caspase-12 has previously been reported. Additionally, we found no differences between caspase-1/11/12-/- and WT mice in their in vivo responses to the ER stress-inducing agent, tunicamycin. Collectively, these findings reveal that caspase-12 does not have readily recognisable overlapping roles with caspases-1 and -11 in the inflammatory response induced by LPS and in necroptosis and apoptosis induced by diverse cytotoxic agents, including the ones that elicit ER stress.


Assuntos
Caspase 12/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Inflamação/metabolismo , Choque Séptico/metabolismo , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 12/deficiência , Caspase 12/genética , Caspases Iniciadoras/deficiência , Caspases Iniciadoras/genética , Morte Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inflamação/induzido quimicamente , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Choque Séptico/induzido quimicamente , Tapsigargina/farmacologia , Tunicamicina/farmacologia
18.
J Invest Dermatol ; 139(6): 1306-1317, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30571969

RESUMO

Inflammatory caspases, activated within the inflammasome, are responsible for the maturation and secretion of IL-1ß/IL-18. Although their expression in psoriasis was shown several years ago, little is known about the role of inflammatory caspases in the context of psoriasis. Here, we confirmed that caspases 1, 4, and 5 are activated in lesional skin from psoriasis patients. We showed in three psoriasis-like models that inflammatory caspases are activated, and accordingly, caspase 1/11 invalidation or pharmacological inhibition by Ac-YVAD-CMK (i.e., Ac-Tyr-Val-Ala-Asp-chloromethylketone) injection induced a decrease in ear thickness, erythema, scaling, inflammatory cytokine expression, and immune cell infiltration in mice. We observed that keratinocytes were primed to secrete IL-1ß when cultured in conditions mimicking psoriasis. Generation of chimeric mice by bone marrow transplantation was carried out to decipher the respective contribution of keratinocytes and/or immune cells in the activation of inflammatory caspases during psoriasis-like inflammatory response. Our data showed that the presence of caspase 1/11 in the immune system is sufficient for a fully inflammatory response, whereas the absence of caspase 1/11 in keratinocytes/fibroblasts had no impact. In summary, our study indicates that inflammatory caspases activated in immune cells are implicated in psoriasis pathogenesis.


Assuntos
Caspase 1/deficiência , Inibidores de Caspase/administração & dosagem , Caspases Iniciadoras/deficiência , Psoríase/tratamento farmacológico , Clorometilcetonas de Aminoácidos/administração & dosagem , Animais , Biópsia , Transplante de Medula Óssea , Caspase 1/genética , Caspase 1/imunologia , Caspases Iniciadoras/genética , Caspases Iniciadoras/imunologia , Caspases Iniciadoras/metabolismo , Células Cultivadas , Ensaios Clínicos como Assunto , Feminino , Humanos , Injeções Intraperitoneais , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Queratinócitos , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Psoríase/imunologia , Psoríase/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Pele/imunologia , Pele/patologia , Quimeras de Transplante
19.
Cell Death Dis ; 9(12): 1182, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518854

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium responsible for severe cases of nosocomial pneumonia. During the infectious process, both neutrophils and monocytes migrate to the site of infection, where they carry out their effector functions and can be affected by different patterns of cell death. Our data show that clinical strains of K. pneumoniae have dissimilar mechanisms for surviving within macrophages; these mechanisms include modulation of microbicidal mediators and cell death. The A28006 strain induced high IL-1ß production and pyroptotic cell death in macrophages; by contrast, the A54970 strain induced high IL-10 production and low IL-1ß production by macrophages. Pyroptotic cell death induced by the A28006 strain leads to a significant increase in bacterial sensitivity to hydrogen peroxide, and efferocytosis of the pyroptotic cells results in efficient bacterial clearance both in vitro and in vivo. In addition, the A54970 strain was able to inhibit inflammasome activation and pyroptotic cell death by inducing IL-10 production. Here, for the first time, we present a K. pneumoniae strain able to inhibit inflammasome activation, leading to bacterial survival and dissemination in the host. The understanding of possible escape mechanisms is essential in the search for alternative treatments against multidrug-resistant bacteria.


Assuntos
Bacteriemia/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Piroptose/imunologia , Animais , Bacteriemia/genética , Bacteriemia/imunologia , Bacteriemia/patologia , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/imunologia , Caspases/deficiência , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamassomos/genética , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/imunologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/isolamento & purificação , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/genética , Piroptose/genética
20.
Immunity ; 49(1): 56-65.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958799

RESUMO

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.


Assuntos
Inflamassomos/metabolismo , Inflamação/fisiopatologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/deficiência , Caspase 1/metabolismo , Linhagem Celular , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Quinina/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...