Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.269
Filtrar
1.
Sci Rep ; 14(1): 9598, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671063

RESUMO

Allergic conjunctivitis (AC) is the most common form of allergic eye disease and an increasingly prevalent condition. Topical eye drop treatments are the usual approach for managing AC, although their impact on the ocular surface is not frequently investigated. The aim of this study was to perform a comparative physicochemical characterization, and in vitro biological evaluations in primary conjunctival and corneal epithelial cells of the new multidose preservative-free bilastine 0.6% and main commercially available eye drops. MTT assay was used to measure cell viability; oxidative stress was analyzed with a ROS-sensitive probe; and apoptosis was evaluated monitoring caspase 3/7 activation. Differences in pH value, osmolarity, viscosity and phosphate levels were identified. Among all formulations, bilastine exhibited pH, osmolarity and viscosity values closer to tear film (7.4, 300 mOsm/l and ~ 1.5-10 mPa·s, respectively), and was the only phosphates-free solution. Single-dose ketotifen did not induce ROS production, and single-dose azelastine and bilastine only induced a mild increase. Bilastine and single-dose ketotifen and azelastine showed high survival rates attributable to the absence of preservative in its formulation, not inducing caspase-3/7-mediated apoptosis after 24 h. Our findings support the use of the new bilastine 0.6% for treating patients with AC to preserve and maintain the integrity of the ocular surface.


Assuntos
Apoptose , Benzimidazóis , Caspase 3 , Sobrevivência Celular , Soluções Oftálmicas , Conservantes Farmacêuticos , Soluções Oftálmicas/farmacologia , Humanos , Conservantes Farmacêuticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Caspase 3/metabolismo , Apoptose/efeitos dos fármacos , Piperidinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Caspase 7/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Conjuntivite Alérgica/tratamento farmacológico , Conjuntivite Alérgica/patologia , Conjuntivite Alérgica/metabolismo , Ftalazinas/farmacologia , Concentração Osmolar , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Células Cultivadas , Viscosidade
2.
Phytomedicine ; 128: 155536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513379

RESUMO

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Assuntos
Apoptose , Caspase 3 , Caspase 7 , Neoplasias Pulmonares , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Caspase 7/metabolismo , Asteraceae/química , Lactonas/farmacologia , Células A549 , Proliferação de Células/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Folhas de Planta/química , Animais , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia
3.
Biomed Mater ; 19(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215478

RESUMO

Hepatocellular carcinoma remains a challenging contributor to the global cancer and related mortality, and claims approximately 800,000 deaths each year. Dysregulation or loss of function mutations involving the tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN), has been well-characterized in various cancers to elicit anomalous cell proliferation and oncogenic transformation. However, the delivery and bioavailability of genes/drugs of interest to carcinomas remains a serious bottleneck behind the success of any anti-cancer formulation. In this study, we have engineered nanoliposomes containing PTEN plasmids, plumbagin, and antioxidant cerium oxide nanoparticles (Lipo-PTEN-Plum) to restore the PTEN expression and inhibit the AKT/PI3K pathway. The Lipo-PTEN-Plum was quasi-spherical in shape with ∼110 nm diameter and ∼64% plumbagin loading efficiency. The Lipo-PTEN-Plum was successfully internalized HepG2 cells, restore PTEN expression and inhibit PI3K/AKT pathway to induce death in cells grown in monolayer and in form of spheroids. Mechanistically, the formulation showed G2/M cell cycle arrest, DNA damage and apoptosis in hepatic cancer cells. Other cellular events such as Caspase-7 overexpression and PI3K (phosphoinositide 3-kinase), AKT (a serine/threonine protein kinase), PARP [Poly (ADP-ribose) polymerases], and mTOR (Mammalian target of rapamycin) inhibition led to the apoptosis in hepatic cancer cells. The mRNA expression profile of PTEN, PI3K, AKT3, Caspase-7, PARP and mTOR proteins, primarily controlling the cancer cell proliferation and apoptosis, suggest that exogenous supply of PTEN could regulate the expression of oncogenic proteins and thus cancer progression.


Assuntos
Neoplasias Hepáticas , Naftoquinonas , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Caspase 7/genética , Caspase 7/farmacologia , Antioxidantes , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Apoptose , Plasmídeos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
4.
Cell Death Differ ; 30(9): 2120-2134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591921

RESUMO

GSDMB is associated with several inflammatory diseases, such as asthma, sepsis and colitis. GZMA is released by cytotoxic lymphocytes and cleaves GSDMB at the K244 site and to induce GSDMB N-terminus dependent pyroptosis. This cleavage of GSDMB is noncell autonomous. In this study, we demonstrated that the GSDMB-N domain (1-91 aa) was important for a novel cell-autonomous function and that GSDMB could bind caspase-4 and promote noncanonical pyroptosis. Furthermore, activated caspase-7 cleaved GSDMB at the D91 site to block GSDMB-mediated promotion of noncanonical pyroptosis during apoptosis. Mechanistically, the cleaved GSDMB-C-terminus (92-417 aa) binds to the GSDMB-N-terminus (1-91 aa) to block the function of GSDMB. During E. coli and S. Typhimurium infection, inhibition of the caspase-7/GSDMB axis resulted in more pyroptotic cells. Furthermore, in a septic mouse model, caspase-7 inhibition or deficiency in GSDMB-transgenic mice led to more severe disease phenotypes. Overall, we demonstrate that apoptotic caspase-7 activation inhibits non-canonical pyroptosis by cleaving GSDMB and provide new targets for sepsis therapy.


Assuntos
Piroptose , Sepse , Animais , Camundongos , Apoptose , Caspase 7 , Escherichia coli , Camundongos Transgênicos
5.
Arch Pharm (Weinheim) ; 356(9): e2300105, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37401845

RESUMO

New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.


Assuntos
Antineoplásicos , Neoplasias , Caspase 3/metabolismo , Caspase 7/metabolismo , Relação Estrutura-Atividade , Feniltioureia/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Interleucina-6/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células
6.
Sci Rep ; 13(1): 11346, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443185

RESUMO

In the current study, we designed and synthesized a series of new quinoline derivatives 10a-p as antiproliferative agents targeting cancer through inhibition of VEGFR-2. Preliminary molecular docking to assess the interactions of the designed derivatives with the binding site of VEGFR-2 (PDB code: 4ASD) displayed binding poses and interactions comparable to sorafenib. The synthesized compounds exhibited VEGFR-2 inhibitory activity with IC50 ranging from 36 nM to 2.23 µM compared to sorafenib (IC50 = 45 nM), where derivative 10i was the most potent. Additionally, the synthesized derivatives were evaluated in vitro for their cytotoxic activity against HepG2 cancer cell line. Seven compounds 10a, 10c, 10d, 10e, 10i, 10n and 10o (IC50 = 4.60, 4.14, 1.07, 0.88, 1.60, 2.88 and 2.76 µM respectively) displayed better antiproliferative activity than sorafenib (IC50 = 8.38 µM). Compound 10i was tested against Transformed Human Liver Epithelial-2 normal cell line (THLE-2) to evaluate its selective cytotoxicity. Furthermore, 10i, as a potent representative of the series, was assayed for its apoptotic activity and cell cycle kinetics' influence on HepG2, its effects on the gene expression of VEGFR-2, and protein expression of the apoptotic markers Caspase-7 and Bax. Compound 10i proved to have a potential role in apoptosis by causing significant increase in the early and late apoptotic quartiles, a remarkable activity in elevating the relative protein expression of Bax and Caspase-7 and a significant reduction of VEGFR-2 gene expression. Collectively, the obtained results indicate that compound 10i has a promising potential as a lead compound for the development of new anticancer agents.


Assuntos
Antineoplásicos , Quinolonas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Caspase 7/metabolismo , Sorafenibe/farmacologia , Quinolonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Proteína X Associada a bcl-2 , Inibidores de Proteínas Quinases/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos
7.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176099

RESUMO

Smart pH-responsive niosomes loaded with either Oxaliplatin (Ox), Ylang ylang essential oil (Y-oil), or co-loaded with both compounds (Ox-Y) (Ox@NSs, Y@NSs, and Ox-Y@NSs, respectively) were formulated utilizing the thin film method. The developed nanocontainers had a spherical morphology with mean particle sizes lower than 170 nm and showed negative surface charges, high entrapment efficiencies, and a pH-dependent release over 24 h. The prepared pH-responsive niosomes' cytotoxicity was tested against the invasive triple-negative breast cancer (MDA-MB-231) cells, compared to free OX and Y-oil. All niosomal formulations loaded with Ox and/or Y-oil significantly improved cytotoxic activity relative to their free counterparts. The Ox-Y@NSs demonstrated the lowest IC50 (0.0002 µg/mL) when compared to Ox@NSs (0.006 µg/mL) and Y@NSs (18.39 µg/mL) or unloaded Ox (0.05 µg/mL) and Y-oil (29.01 µg/mL). In addition, the percentages of the MDA-MB-231 cell population in the late apoptotic and necrotic quartiles were profoundly higher in cells treated with the smart Ox-Y@NSs (8.38% and 5.06%) than those exposed to free Ox (7.33% and 1.93%) or Y-oil (2.3% and 2.13%) treatments. Gene expression analysis and protein assays were performed to provide extra elucidation regarding the molecular mechanism by which the prepared pH-sensitive niosomes induce apoptosis. Ox-Y@NSs significantly induced the gene expression of the apoptotic markers Tp53, Bax, and Caspase-7, while downregulating the antiapoptotic Bcl2. As such, Ox-Y@NSs are shown to activate the intrinsic pathway of apoptosis. Moreover, the protein assay ascertained the apoptotic effects of Ox-Y@NSs, generating a 4-fold increase in the relative protein quantity of the late apoptotic marker Caspase-7. Our findings suggest that combining natural essential oil with synthetic platinum-based drugs in pH-responsive nanovesicles is a promising approach to breast cancer therapy.


Assuntos
Antineoplásicos , Cananga , Óleos Voláteis , Neoplasias de Mama Triplo Negativas , Humanos , Oxaliplatina/farmacologia , Caspase 7 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Lipossomos , Óleos Voláteis/farmacologia , Óleos de Plantas , Antineoplásicos/farmacologia , Concentração de Íons de Hidrogênio
8.
Chemistry ; 29(40): e202300872, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37005499

RESUMO

Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).


Assuntos
Simulação de Dinâmica Molecular , Humanos , Caspase 7/metabolismo , Regulação Alostérica , Conformação Proteica , Sítio Alostérico , Cristalografia por Raios X
9.
Artigo em Inglês | MEDLINE | ID: mdl-37114104

RESUMO

Objective: LncRNAs are closely correlated with chronic obstructive pulmonary disease (COPD). We investigated the molecular mechanism of lncRNA RP11-521C20.3, which targets the action of the Bcl-2 modifying factor (BMF) signaling pathway in the apoptosis of cigarette smoke extract (CSE)-treated A549 cells. Methods: Lung tissues derived from cigarette smoke exposed rats (COPD group) and controls were examined using TUNEL assay for apoptotic cells and using immunohistochemistry for BMF expression levels. Overexpression and knockdown of BMF by lentiviral vector transfection were used to explore the role of BMF on the apoptosis of CSE-treated A549 cells. Overexpression and knockdown of RP11-521C20.3 were used to assess the effect of RP11-521C20.3 on the expression levels of BMF and apoptosis in CSE-treated A549 cells. Cell proliferation, mitochondrial morphology, and apoptosis were assessed in A549 cells. Real-time quantitative polymerase chain reactions and Western blotting detected the expression of apoptosis-related molecules. Results: The number of apoptotic cells and the level of BMF protein were significantly increased in lung tissues of the COPD group compared to the control group. Overexpression of BMF or knockdown of RP11-521C20.3 in CSE-treated A549 cells increased apoptosis, inhibited cell proliferation, and exacerbated mitochondrial damage. There were also increased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and decreased protein levels of Bcl-2 and survivin. Knockdown of BMF or overexpression of RP11-521C20.3 in CSE-treated A549 cells attenuated apoptosis, promoted cell proliferation, and alleviated mitochondrial damage. Observed effects also included decreased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and increased protein levels of Bcl-2 and survivin. In CSE-treated A549 cells, overexpression of RP11-521C20.3 suppressed the expression of BMF mRNA and protein. Conclusion: In CSE-treated A549 cells, BMF promoted apoptosis and RP11-521C20.3 might target the BMF signaling axis to protect CSE-treated A549 cells from apoptosis.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Ratos , Animais , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Longo não Codificante/genética , Células A549 , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 7/farmacologia , Fumar Cigarros/efeitos adversos , Proteína Supressora de Tumor p53 , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Transdução de Sinais , Nicotiana , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
10.
Anatol J Cardiol ; 27(3): 135-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856595

RESUMO

BACKGROUND: Pistacia vera L. (green pistachio) has been shown to increase antioxidant capacity and protect against cardiovascular diseases and cancer. This study investigated the protective effect of the Pistacia vera L. hull in rats with experimental cardiac damage induced by doxorubicin. METHODS: Sixty adult Wistar albino rats were randomly divided into 5 groups (n = 12). Sham, doxorubicin, doxorubicin + Pistacia vera L. extract 50 mg/kg, doxorubicin + Pistacia vera L. extract 100 mg/kg, and Pistacia vera L. extract 100 mg/kg. Biochemistry parameters, total antioxidant status, total oxidant status, oxidative stress index, 8-hydroxydeoxy guanosine, and caspase 3/7 values were measured in serum samples. Excised heart tissues were examined histopathologically. RESULTS: The groups were statistically significantly different in 8hydroxydeoxy guanosine, caspase 3/7, total antioxidant status, total oxidant status, oxidative stress index, and basal biochemical parameter values (P <.05, P <.001). In group II, 8-hydroxydeoxy guanosine, caspase 3/7, and total oxidant status values increased while the total antioxidant status value decreased (P <.001). In the treatment groups (group III and group IV), 8-hydroxydeoxy guano sine and caspase 3/7 values decreased compared to group II (P < .001). While total oxidant status and oxidative stress index values decreased in the treatment groups, total antioxidant status values increased (P <.001). The histopathological examination of the heart revealed fewer areas of focal necrosis in the treatment groups compared to group II. CONCLUSION: In this study, the cardioprotective effect of Pistacia vera L. hull extract was investigated in vivo. It was shown that Pistacia vera L. hull extract reduced apoptosis and deoxyribonucleic acid damage in the face of cardiac damage and had antioxidant activity. Future studies will increase our knowledge on this subject.


Assuntos
Antioxidantes , Pistacia , Animais , Ratos , Caspase 3 , Doxorrubicina , Guanosina , Oxidantes , Extratos Vegetais , Ratos Wistar , Caspase 7
11.
Appl Biochem Biotechnol ; 195(11): 6927-6941, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36951939

RESUMO

We investigated the possible anticancer mechanisms of Pteris vittata [PV] n-hexane extract on MCF-7 [breast cancer cell line]. Cultured cell lines were treated with various concentrations of this extract ± Baf-A1 [autophagic inhibitor]. Cells' viability, apoptotic markers [caspase-7, Bax, and Bcl-2], autophagic markers [light chain 3 [LC-3] and P62/SQSTM1]], and the tumor suppressor P53 and its mRNA were checked by their corresponding methods. Treated cell lines showed significant concentration and time-dependent reductions in cell viability in response to PV-n-hexane extract and also exhibited a concomitant induction of apoptosis [increased chromatin condensation, nuclear fragmentation, and pro-apoptotic Bax, and cleaved caspase-7 levels while decreased Bcl-2 levels] and autophagy [increased autophagosomes vacuoles, and LC3B II levels while decreased P62/SQSTM1 levels]. Moreover, PV-n-hexane extract-treated cells showed significant increases in the P53 and its mRNA levels. The addition of Baf-A1 reversed the PV-n-hexane extract autophagic effects and increased apoptotic cell percentage with a much increase in the cleaved caspase-7 and P53 protein and its mRNA levels. We concluded that the PV-n-hexane extract exhibits cytotoxic effects on the MCF-7 cell line with significant reductions in cell viability and concomitant autophagy and apoptosis induction. Inhibition of autophagy in the PV-treated MCF-7 cells enhances apoptosis via a p35-dependent pathway.


Assuntos
Antineoplásicos , Neoplasias da Mama , Pteris , Humanos , Feminino , Linhagem Celular Tumoral , Caspase 7/metabolismo , Caspase 7/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Pteris/metabolismo , Proteína X Associada a bcl-2/metabolismo , Egito , Proteína Sequestossoma-1/metabolismo , Apoptose , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células MCF-7 , Neoplasias da Mama/metabolismo , RNA Mensageiro , Autofagia
12.
Science ; 379(6637): 1112-1117, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36758106

RESUMO

Certain inhibitor of apoptosis (IAP) family members are sentinel proteins that prevent untimely cell death by inhibiting caspases. Antagonists, including second mitochondria-derived activator of caspases (SMAC), regulate IAPs and drive cell death. Baculoviral IAP repeat-containing protein 6 (BIRC6), a giant IAP with dual E2 and E3 ubiquitin ligase activity, regulates programmed cell death through unknown mechanisms. We show that BIRC6 directly restricts executioner caspase-3 and -7 and ubiquitinates caspase-3, -7, and -9, working exclusively with noncanonical E1, UBA6. Notably, we show that SMAC suppresses both mechanisms. Cryo-electron microscopy structures of BIRC6 alone and in complex with SMAC reveal that BIRC6 is an antiparallel dimer juxtaposing the substrate-binding module against the catalytic domain. Furthermore, we discover that SMAC multisite binding to BIRC6 results in a subnanomolar affinity interaction, enabling SMAC to competitively displace caspases, thus antagonizing BIRC6 anticaspase function.


Assuntos
Apoptose , Caspase 3 , Caspase 7 , Caspase 9 , Proteínas Inibidoras de Apoptose , Ubiquitina-Proteína Ligases , Humanos , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 9/metabolismo , Microscopia Crioeletrônica , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Domínio Catalítico , Multimerização Proteica
13.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835566

RESUMO

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Assuntos
Caspases , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Monócitos/metabolismo
14.
EMBO J ; 42(5): e110468, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647737

RESUMO

Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1ß maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1ß release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1ß maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Apoptose , Caspase 1/genética , Caspase 1/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
15.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611995

RESUMO

Therapy resistance is still a major reason for treatment failure in colorectal cancer (CRC). Previously, we identified the E3 ubiquitin ligase TRIM25 as a novel suppressor of caspase-2 translation which contributes to the apoptosis resistance of CRC cells towards chemotherapeutic drugs. Here, we report the executioner caspase-7 as being a further target of TRIM25. The results from the gain- and loss-of-function approaches and the actinomycin D experiments indicate that TRIM25 attenuates caspase-7 expression mainly through a decrease in mRNA stability. The data from the RNA pulldown assays with immunoprecipitated TRIM25 truncations indicate a direct TRIM25 binding to caspase-7 mRNA, which is mediated by the PRY/SPRY domain, which is also known to be highly relevant for protein-protein interactions. By employing TRIM25 immunoprecipitation, we identified the heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) as a novel TRIM25 binding protein with a functional impact on caspase-7 mRNA stability. Notably, the interaction of both proteins was highly sensitive to RNase A treatment and again depended on the PRY/SPRY domain, thus indicating an indirect interaction of both proteins which is achieved through a common RNA binding. Ubiquitin affinity chromatography showed that both proteins are targets of ubiquitin modification. Functionally, the ectopic expression of caspase-7 in CRC cells caused an increase in poly ADP-ribose polymerase (PARP) cleavage concomitant with a significant increase in apoptosis. Collectively, the negative regulation of caspase-7 by TRIM25, which is possibly executed by hnRNPH1, implies a novel survival mechanism underlying the chemotherapeutic drug resistance of CRC cells. The targeting of TRIM25 could therefore offer a promising strategy for the reduction in therapy resistance in CRC patients.


Assuntos
Carcinoma , Neoplasias do Colo , Humanos , RNA Mensageiro/genética , Caspase 7 , Ubiquitina-Proteína Ligases/metabolismo , RNA , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Ubiquitina , Apoptose/genética , Proteínas com Motivo Tripartido/genética , Fatores de Transcrição/genética
16.
Eur J Med Chem ; 245(Pt 1): 114865, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335743

RESUMO

The development of novel therapeutics promoting selective tumor elimination is the mainstay of clinical oncology. Emerging insights into tumor targeting reveal caspases activation, especially caspase-3, as a personalized anticancer strategy. Our on-going cancer research has exploited Passerini α-acyloxy carboxamides as caspase-3/7-dependent apoptotic inducers. Herein, we adopted scaffold hopping design to introduce new series of isoindole-based Passerini adducts as caspase-3/7 activators inspired by natural alkaloids from Lion's Mane mushroom promoting caspase-3-mediated apoptosis. Additional pharmacophoric motifs of lead caspase activators were merged into the tailored Passerini skeleton. The rationally designed adducts were synthesized utilizing one-pot reaction of the novel 4-(2'-phthalimido)phenylisonitrile 5, cyclohexanone and miscellaneous carboxylic acids under Passerini conditions. All derivatives were screened for their antiproliferative activities against lung A549, colorectal Caco-2 and breast MDA-MB 231 cancer cells compared to normal fibroblasts utilizing MTT assay. Most of the evaluated derivatives were superior to 5-fluorouracil. The 2-(1H-indol-3-yl)acetate derivative (8a) recorded the highest anticancer potency (IC50 = 0.04-0.11 µM) and selectivity (SI = 42.59-125.53), followed by the 3-(4-(trifluoromethyl)phenyl)acrylate (8m), the 2-(phenylsulfonyl)glycinate (8q), and the 2-(2-(3-phenyl-1,2,4-oxadiazol-5-yl)phenoxy)acetate (8c) derivatives, respectively. The four hits induced cancer cells apoptosis (up to 57.99%) via caspase-3/7 activation (up to 5.47 folds). Apoptosis-inducing factor1 (AIF1) quantification assay excluded their caspase-independent apoptosis induction potential via AIF1 signaling pathway. Docking simulations clarified the possible binding modes of the hit compounds with XIAP BIR2 domain; the specific receptor of caspase-3/7 activators, and aided identifying their structural determinants of activity. Finally, their practical LogP, efficiency metrics, in silico ADMET profiling were drug-like.


Assuntos
Antineoplásicos , Apoptose , Caspase 3 , Caspase 7 , Isoindóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células CACO-2 , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Isoindóis/química , Isoindóis/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Células A549
17.
Ocul Immunol Inflamm ; 31(5): 1103-1110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35708312

RESUMO

AIM: To compare the expression of apoptosis-related factors and Nlrp3-related proteins in the lens epithelial cells (LECs) of patients with diabetes and cataract and patients with age-related cataract (ARC) alone. METHODS: All patients were divided into four groups according to the presence or absence of diabetes mellitus (DM) and the degree of diabetic retinopathy (DR). LECs were obtained during cataract surgery. The expression levels of cleaved caspase-3, caspase-7, ASC, caspase-1and Nlrp3 in LECs were determined. And analyzed by age, course of DM, and HbA1c levels. RESULTS: The incidence of LEC apoptosis and positive rates of cleaved caspase-3 and caspase-7 expression were significantly higher in the groups with DM (P<0.05).The positive expression rates of ASC, caspase-1, and Nlrp3 increased with longer duration of DM, increased HbA1c level, or advanced DR (P<0.05). CONCLUSION: In cataract patients with DM, the expression of apoptosis-related factors in LECs increased. Nlrp3-related protein expression levels, diabetes duration, HbA1c levels, and extent of DR may be potential risk factors for diabetic cataract formation.


Assuntos
Catarata , Diabetes Mellitus , Retinopatia Diabética , Cristalino , Humanos , Caspase 3/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 7/metabolismo , Hemoglobinas Glicadas , Catarata/etiologia , Cristalino/metabolismo , Retinopatia Diabética/metabolismo , Apoptose , Células Epiteliais/metabolismo
18.
J Cancer Res Ther ; 18(6): 1651-1657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412426

RESUMO

Objective: The present study aimed to investigate the inhibitory role of second mitochondria determined activator of caspases mimetic on inhibitor of apoptosis proteins (IAPs) and regulation of caspases in nonsmall cell lung cancer cell line. Materials and Methods: Dimethyl sulfoxide and 3-(4, 5-dimethyl thizol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay was done to determine the IC50 of BV6 using NCI-H23 cell line. The levels of mRNA of X-linked IAP (XIAP), cellular IAP (cIAP-1), cIAP-2, caspase-6, and caspase-7 in H23 cell line were evaluated by a quantitative real-time polymerase chain reaction, while their protein expressions were tested using western blotting. Results: Two doses of BV6 dependently downregulated the expression of mRNA of XIAP (P = 0.002, P= 0.0003 vs. untreated), cIAP-1 (P = 0.05, P = 0.005 vs. untreated), and cIAP-2 (P = 0.001, P = 0.0002 vs. untreated), respectively, while the compound upregulated the mRNA expression of caspase-6 (P = 0.001, P < 0.0001 vs. untreated) and caspase-7 (P = 0.001, P = 0.0004 vs. untreated), respectively. Dose dependent of BV6 treatment significantly decreased the protein level of XIAP (P = 0.003, P = 0.007 vs. untreated), cIAP-1 (P = 0.02, P = 0.01 vs. untreated), and cIAP-2 (P = 0.008,P = 0.008 vs. untreated), respectively. However, the compound increased the protein level of caspase-6 and caspase-7 when compared to untreated control (P = 0.006,P = 0.001) and (P = 0.01, P = 0.001), respectively. Conclusions: The result showed that BV6 treatment reduced the level of mRNA of XIAP, cIAP-1, and cIAP-2 and increased the gene expression of caspase-6 and caspase-7 in NCI-H23 cell line. Therefore, the study revealed that BV6 could be used in future as additional therapeutics in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Caspase 6 , Caspase 7/genética , Caspases , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , RNA Mensageiro/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose/metabolismo
19.
Front Public Health ; 10: 979933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203656

RESUMO

Background: Human papillomavirus-positive (HPV+) cervical cancers are highly heterogeneous in clinical and molecular characteristics. Thus, an investigation into their heterogeneous immunological profiles is meaningful in providing both biological and clinical insights into this disease. Methods: Based on the enrichment of 29 immune signatures, we discovered immune subtypes of HPV+ cervical cancers by hierarchical clustering. To explore whether this subtyping method is reproducible, we analyzed three bulk and one single cell transcriptomic datasets. We also compared clinical and molecular characteristics between the immune subtypes. Results: Clustering analysis identified two immune subtypes of HPV+ cervical cancers: Immunity-H and Immunity-L, consistent in the four datasets. In comparisons with Immunity-L, Immunity-H displayed stronger immunity, more stromal contents, lower tumor purity, proliferation potential, intratumor heterogeneity and stemness, higher tumor mutation burden, more neoantigens, lower levels of copy number alterations, lower DNA repair activity, as well as better overall survival prognosis. Certain genes, such as MUC17, PCLO, and GOLGB1, showed significantly higher mutation rates in Immunity-L than in Immunity-H. 16 proteins were significantly upregulated in Immunity-H vs. Immunity-L, including Caspase-7, PREX1, Lck, C-Raf, PI3K-p85, Syk, 14-3-3_epsilon, STAT5-α, GATA3, Src_pY416, NDRG1_pT346, Notch1, PDK1_pS241, Bim, NF-kB-p65_pS536, and p53. Pathway analysis identified numerous immune-related pathways more highly enriched in Immunity-H vs. Immunity-L, including cytokine-cytokine receptor interaction, natural killer cell-mediated cytotoxicity, antigen processing and presentation, T/B cell receptor signaling, chemokine signaling, supporting the stronger antitumor immunity in Immunity-H vs. Immunity-L. Conclusion: HPV+ cervical cancers are divided into two subgroups based on their immune signatures' enrichment. Both subgroups have markedly different tumor immunity, progression phenotypes, genomic features, and clinical outcomes. Our data offer novel perception in the tumor biology as well as clinical implications for HPV+ cervical cancer.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Caspase 7 , Quimiocinas , Citocinas , Feminino , Humanos , NF-kappa B , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Fosfatidilinositol 3-Quinases , Receptores de Antígenos de Linfócitos B , Receptores de Citocinas , Fator de Transcrição STAT5 , Proteína Supressora de Tumor p53 , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-36294202

RESUMO

A novel ruthenium(III)-pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 µM for HepG2, 38.5 µM for T47D, 39.7 µM for HCT, and 46.7 µM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3-treated cells. The score values for the two receptors were -3.25 and -3.91 kcal/mol.


Assuntos
Antineoplásicos , Rutênio , Humanos , Simulação de Acoplamento Molecular , Bases de Schiff/farmacologia , Bases de Schiff/química , Células Hep G2 , Caspase 3/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ligantes , Caspase 7/metabolismo , Fator A de Crescimento do Endotélio Vascular , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Apoptose , Pirimidinas , DNA , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...