Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 108(4): 1117-1127, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531834

RESUMO

Inflammasomes are cytosolic multiprotein complexes that sense microbial infections or host cell damage, triggering cytokine production and a proinflammatory form of cell death, called pyroptosis. Whereas pyroptosis and cytokine production may often promote host resistance to infections, uncontrolled inflammasome activation leads to autoinflammatory diseases in humans. Among the multiple inflammasomes described, the neuronal apoptosis inhibitory protein/nucleotide-binding domain leucine-rich repeat-containing protein family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome emerged as a critical component for the restriction of bacterial infections. Accordingly, our understanding of this inflammasome advanced remarkably over the last 10 yr, expanding our knowledge about ligand-receptor interaction; cryo-EM structure; and downstream effectors and substrates, such as gasdermin-D, caspase-1, caspase-8, and caspase-7. In this review, we discuss recent advances on the biology of the NLRC4 inflammasome, in terms of structure and activation mechanisms, importance in bacterial and nonbacterial diseases, and the identification of NLRC4 gain-of-function mutations leading to NLRC4-associated autoinflammatory diseases in humans.


Assuntos
Doenças Autoimunes/imunologia , Infecções Bacterianas/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Inflamassomos/imunologia , Animais , Doenças Autoimunes/patologia , Infecções Bacterianas/patologia , Caspase 1/imunologia , Caspase 7 , Caspase 8/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Ligação a Fosfato/imunologia
2.
PLoS Pathog ; 15(6): e1007886, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251782

RESUMO

Inflammasomes are cytosolic multi-protein complexes that detect infection or cellular damage and activate the Caspase-1 (CASP1) protease. The NAIP5/NLRC4 inflammasome detects bacterial flagellin and is essential for resistance to the flagellated intracellular bacterium Legionella pneumophila. The effectors required downstream of NAIP5/NLRC4 to restrict bacterial replication remain unclear. Upon NAIP5/NLRC4 activation, CASP1 cleaves and activates the pore-forming protein Gasdermin-D (GSDMD) and the effector caspase-7 (CASP7). However, Casp1-/- (and Casp1/11-/-) mice are only partially susceptible to L. pneumophila and do not phenocopy Nlrc4-/-mice, because NAIP5/NLRC4 also activates CASP8 for restriction of L. pneumophila infection. Here we show that CASP8 promotes the activation of CASP7 and that Casp7/1/11-/- and Casp8/1/11-/- mice recapitulate the full susceptibility of Nlrc4-/- mice. Gsdmd-/- mice exhibit only mild susceptibility to L. pneumophila, but Gsdmd-/-Casp7-/- mice are as susceptible as the Nlrc4-/- mice. These results demonstrate that GSDMD and CASP7 are the key substrates downstream of NAIP5/NLRC4/CASP1/8 required for resistance to L. pneumophila.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Caspase 1/imunologia , Caspase 7/imunologia , Caspase 8/imunologia , Inflamassomos/imunologia , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Caspase 1/genética , Caspase 7/genética , Caspase 8/genética , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Doença dos Legionários/genética , Doença dos Legionários/patologia , Camundongos , Camundongos Knockout , Proteína Inibidora de Apoptose Neuronal/genética , Proteínas de Ligação a Fosfato
3.
PLoS Pathog ; 13(8): e1006502, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771586

RESUMO

Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires' disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Caspase 1/imunologia , Caspase 8/imunologia , Inflamassomos/imunologia , Doença dos Legionários/imunologia , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio , Caspase 1/metabolismo , Caspase 8/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/imunologia , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Legionella pneumophila , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Inibidora de Apoptose Neuronal , Proteínas de Ligação a Fosfato , Reação em Cadeia da Polimerase em Tempo Real
4.
Exp Parasitol ; 168: 9-15, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27328973

RESUMO

Congenital Chagas disease is caused by the protozoan parasite Trypanosoma cruzi that must cross the placental barrier during transmission. The trophoblast constitutes the first tissue in contact with the maternal-blood circulating parasite. Importantly, the congenital transmission rates are low, suggesting the presence of local placental defense mechanisms. Cellular proliferation and differentiation as well as apoptotic cell death are induced by the parasite and constitute part of the epithelial turnover of the trophoblast, which has been suggested to be part of those placental defenses. On the other hand, caspase-8 is an essential molecule in the modulation of trophoblast turnover by apoptosis and by epithelial differentiation. As an approach to study whether T. cruzi induced trophoblast turnover and infection is mediated by caspase-8, we infected BeWo cells (a trophoblastic cell line) with the parasite and determined in the infected cells the expression and enzymatic activity of caspase-8, DNA synthesis (as proliferation marker), ß-human chorionic gonadotropin (ß-hCG) (as differentiation marker) and activity of Caspase-3 (as apoptotic death marker). Parasite load in BeWo cells was measured by DNA quantification using qPCR and cell counting. Our results show that T. cruzi induces caspase-8 activity and that its inhibition increases trophoblast cells infection while decreases parasite induced cellular differentiation and apoptotic cell death, but not cellular proliferation. Thus, caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against T. cruzi infection. Together with our previous results, we suggest that the trophoblast turnover is part of local placental anti-parasite mechanisms.


Assuntos
Caspase 8/metabolismo , Trofoblastos/enzimologia , Trofoblastos/parasitologia , Trypanosoma cruzi/imunologia , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/imunologia , Inibidores de Caspase/farmacologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Trofoblastos/imunologia , Células Vero
5.
J Biol Chem ; 287(18): 14912-22, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22334655

RESUMO

Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that ß-actin is the receptor of C7H2 in the tumor cells. C7H2 induces ß-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.


Assuntos
Actinas/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cadeias Pesadas de Imunoglobulinas/farmacologia , Região Variável de Imunoglobulina/farmacologia , Melanoma/prevenção & controle , Proteínas de Neoplasias/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Antineoplásicos/imunologia , Candida albicans/imunologia , Caspase 3/imunologia , Caspase 8/imunologia , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , DNA de Neoplasias/imunologia , Proteínas Fúngicas/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Masculino , Melanoma/imunologia , Melanoma/patologia , Glicoproteínas de Membrana/imunologia , Camundongos , Metástase Neoplásica
6.
Immunobiology ; 216(1-2): 208-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20542587

RESUMO

INTRODUCTION: Deregulation of apoptosis across the Fas-FasL pathway is an increasingly relevant phenomenon in the pathogenic mechanisms associated with autoimmune diseases. Caspase-8 initiates the activation of the apoptotic process and interacts directly with Fas in the membrane of the T lymphocyte. OBJECTIVES: To standardize an Elisa essay to measure the concentration of anti-caspase-8 antibodies in plasma of Type 1 Diabetes (T1D) patients and analyze their possible distribution and association with characteristics of the disease. METHODS AND SUBJECTS: 124 patients newly diagnosed with T1D and 132 controls: children and youngsters. ELISA test was standardized to detect anti-caspase-8 antibodies in plasma. It correlated the concentration of this antibody with classical markers of autoimmunity as anti-IA-2 and anti-GAD65, and the clinical characteristics at onset of diabetes mellitus. The statistical analysis was performed using logistic regression. RESULTS: Patients with T1D showed a higher concentration of anti-caspase-8 antibodies regarding the controls (87.5 ng/ml versus 24.3 ng/ml, p < 0.0001, values expressed as median). The proportion of patients with T1D and high concentrations of anti-caspase-8 (percentile 50-75) was significantly different from the control group (p < 0.0001). Anti-caspase-8 showed a strong association with positive anti-GAD65 (OR = 3.48, p < 0.035) and ketoacidosis (OR = 10.74, p < 0.0001) events, with glycemia and age at diagnosis as contributing variables. CONCLUSION: This is the first report in the literature of levels of anti-caspase-8 antibodies in T1D through ELISA. The high concentration in patients with T1D, and its strong correlation with anti-GAD65 auto-antibodies, suggests a potential role of anti-caspase-8 auto-antibodies as surrogate marker autoimmunity in T1D patients.


Assuntos
Anticorpos/sangue , Biomarcadores/sangue , Caspase 8/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Criança , Pré-Escolar , Chile , Diabetes Mellitus Tipo 1/fisiopatologia , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Epitopos , Feminino , Glutamato Descarboxilase/imunologia , Humanos , Cetose , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA