Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 26(2): 229-244, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29748600

RESUMO

Apical caspases initiate and effector caspases execute apoptosis. Reagents that can distinguish between caspases, particularly apical caspases-8, 9, and 10 are scarce and generally nonspecific. Based upon a previously described large-scale screen of peptide-based caspase substrates termed HyCoSuL, we sought to develop reagents to distinguish between apical caspases in order to reveal their function in apoptotic cell death paradigms. To this end, we selected tetrapeptide-based sequences that deliver optimal substrate selectivity and converted them to inhibitors equipped with a detectable tag (activity-based probes-ABPs). We demonstrate a strong relationship between substrate kinetics and ABP kinetics. To evaluate the utility of selective substrates and ABPs, we examined distinct apoptosis pathways in Jurkat T lymphocyte and MDA-MB-231 breast cancer lines triggered to undergo cell death via extrinsic or intrinsic apoptosis. We report the first highly selective substrate appropriate for quantitation of caspase-8 activity during apoptosis. Converting substrates to ABPs promoted loss-of-activity and selectivity, thus we could not define a single ABP capable of detecting individual apical caspases in complex mixtures. To overcome this, we developed a panel strategy utilizing several caspase-selective ABPs to interrogate apoptosis, revealing the first chemistry-based approach to uncover the participation of caspase-8, but not caspase-9 or -10 in TRAIL-induced extrinsic apoptosis. We propose that using select panels of ABPs can provide information regarding caspase-8 apoptotic signaling more faithfully than can single, generally nonspecific reagents.


Assuntos
Caspase 10/isolamento & purificação , Caspase 8/isolamento & purificação , Caspase 9/isolamento & purificação , Peptídeos/química , Apoptose/genética , Caspase 10/química , Caspase 10/genética , Caspase 3/química , Caspase 3/genética , Caspase 3/isolamento & purificação , Caspase 8/química , Caspase 8/genética , Caspase 9/química , Caspase 9/genética , Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Humanos , Células Jurkat , Cinética , Transdução de Sinais , Especificidade por Substrato
2.
EMBO J ; 28(13): 1916-25, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19494828

RESUMO

During stress-induced apoptosis, the initiator caspase-9 is activated by the Apaf-1 apoptosome and must remain bound to retain significant catalytic activity. Nevertheless, in apoptotic cells the vast majority of processed caspase-9 is paradoxically observed outside the complex. We show herein that apoptosome-mediated cleavage of procaspase-9 occurs exclusively through a CARD-displacement mechanism, so that unlike the effector procaspase-3, procaspase-9 cannot be processed by the apoptosome as a typical substrate. Indeed, procaspase-9 possessed higher affinity for the apoptosome and could displace the processed caspase-9 from the complex, thereby facilitating a continuous cycle of procaspase-9 recruitment/activation, processing, and release from the complex. Owing to its rapid autocatalytic cleavage, however, procaspase-9 per se contributed little to the activation of procaspase-3. Thus, the Apaf-1 apoptosome functions as a proteolytic-based 'molecular timer', wherein the intracellular concentration of procaspase-9 sets the overall duration of the timer, procaspase-9 autoprocessing activates the timer, and the rate at which the processed caspase-9 dissociates from the complex (and thus loses its capacity to activate procaspase-3) dictates how fast the timer 'ticks' over.


Assuntos
Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/metabolismo , Animais , Apoptose , Apoptossomas/genética , Apoptossomas/isolamento & purificação , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/isolamento & purificação , Caspase 3/genética , Caspase 3/isolamento & purificação , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/isolamento & purificação , Linhagem Celular , Clonagem Molecular , Ativação Enzimática , Humanos , Camundongos , Mutação
3.
Front Biosci ; 12: 3343-54, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485304

RESUMO

Proteolytic processing of procaspase-9 is required for its activation, but processing in itself appears to be insufficient for its activity. We studied caspase activation in a cell-free system and found that incubation of cytosol from rat kidney proximal tubule cells with Cytochrome c (Cyt c) and dATP results in rapid autocatalytic processing of procaspase-9 from ~50 kD to ~38 kD size fragment. Moreover, Cyt c concentration influences the production of alternatively processed forms of caspase-9. At lower Cyt c concentration (0.01-0.05 mg/ml), two fragments of caspase-9 of the size 38 and 40 kD are produced. In contrast, at higher concentrations of Cyt c (>0.1 mg/ml) only 38 kD fragment will prevail. However, our failure to capture processed caspase-9 by affinity labeling or co-elution with Apaf-1 suggested that caspase-9 undergoes a conformational change during its enzymatic action on effector caspases, resulting in its release from the apoptosome complex and inactivation. In support of this hypothesis, catalytic inhibitors of caspase-9 prevented its release from the apoptosome complex without affecting its auto-processing and allowed successful capture of active caspase-9 (38 kD) and its complex by affinity labeling. These observations suggest that complex allosteric interactions with the apoptosome complex influence caspase-9 activity and function by controlling not only the induction of its enzymatic activity, but also its rapid termination.


Assuntos
Apoptossomas/metabolismo , Caspase 9/metabolismo , Animais , Caspase 9/isolamento & purificação , Inibidores de Caspase , Linhagem Celular , Cromatografia de Afinidade , Cromatografia em Gel , Inibidores de Cisteína Proteinase/farmacologia , Rim/enzimologia , Processamento de Proteína Pós-Traducional , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...