Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Neurosci Lett ; 820: 137572, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38072029

RESUMO

BACKGROUND: Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS: This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS: Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS: The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.


Assuntos
Antipsicóticos , Aranhas , Camundongos , Masculino , Animais , Haloperidol/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Antipsicóticos/efeitos adversos
2.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555568

RESUMO

Schizophrenia is a chronic mental illness, which remains difficult to treat. A high resistance to the available therapies, their insufficient efficacy, and numerous side effects are the reasons why there is an urgent need to develop new antipsychotics. This study aimed to assess the antipsychotic-like effects of JJGW08, a novel arylpiperazine alkyl derivative of salicylamide, in rodents. First, considering the JJGW08 receptor profile, we investigated the compound's intrinsic activity towards dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors using functional assays. Next, we assessed the effect of JJGW08 on MK-801- and amphetamine-induced hyperlocomotion, its risk of inducing catalepsy and impairing motor coordination, as well as the anxiolytic-like effects in the four-plate and marble burying tests in mice. Finally, we investigated the antipsychotic-like properties of JJGW08 in rats using MK-801-induced hyperlocomotion and prepulse inhibition tests. We found that JJGW08 showed antagonistic properties at dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors. However, the effect on the 5-HT2A and 5-HT7 receptors was very weak. Moreover, the tested compound showed an antipsychotic-like effect in MK-801- and amphetamine-induced hyperlocomotion but not in a prepulse inhibition test in rats. Notably, JJGW08 demonstrated anxiolytic-like properties in both behavioral tests. Importantly, the compound did not induce catalepsy or motor coordination impairment in mice at antipsychotic-like doses. Our study suggests it is worth searching for new potential antipsychotics among arylpiperazine alkyl derivatives of salicylamide.


Assuntos
Ansiolíticos , Antipsicóticos , Ratos , Camundongos , Animais , Antipsicóticos/efeitos adversos , Serotonina/efeitos adversos , Ansiolíticos/farmacologia , Dopamina/efeitos adversos , Roedores , Maleato de Dizocilpina/efeitos adversos , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Anfetamina/farmacologia
3.
Behav Pharmacol ; 33(5): 333-341, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695543

RESUMO

Tetrabenazine, a preferential inhibitor of the vesicular monoamine transporter type 2, depletes the brain monoamines dopamine, serotonin and norepinephrine. Tetrabenazine and deutetrabenazine (Austedo ®) are used to treat chorea associated with Huntington's disease. However, both compounds are known to aggravate Parkinsonism and depression observed in Huntington's disease patients. NLX-112 (a.k.a. befiradol/F13640) is a highly selective, potent and efficacious serotonin 5-HT 1A agonist. In animal models, it has robust efficacy in combating other iatrogenic motor disorders such as L-DOPA-induced dyskinesia and has marked antidepressant-like activity in rodent tests. In the present study, we investigated, in rats, the efficacy of NLX-112 to counteract tetrabenazine-induced catalepsy (a model of Parkinsonism) and tetrabenazine-induced potentiation of immobility in the forced swim test (FST, a model to detect antidepressant-like activity). The prototypical 5-HT 1A agonist, (±)8-OH-DPAT, and the 5-HT 1A partial agonist/dopamine D2 receptor blocker, buspirone, were used as comparators. Both NLX-112 and (±)8-OH-DPAT (0.16-2.5 mg/kg p.o. or s.c., respectively) abolished catalepsy induced by tetrabenazine (2 mg/kg i.p.). In comparison, buspirone (0.63-5.0 mg/kg p.o.) was ineffective and even tended to potentiate tetrabenazine-induced catalepsy at 0.63 mg/kg. In the FST, NLX-112 and (±)8-OH-DPAT (0.63 mg/kg) strongly reduced immobility when administered alone but also significantly opposed potentiation of immobility induced by tetrabenazine (1.5 mg/kg i.p.). Buspirone (0.63 and 2.5 mg/kg p.o.) had no effect by itself or against tetrabenazine. These results strongly suggest that selective and highly efficacious 5-HT 1A agonists, such as NLX-112, may be useful in combating tetrabenazine-induced Parkinsonism and/or depression in Huntington's disease patients.


Assuntos
Doença de Huntington , Transtornos Parkinsonianos , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Antidepressivos/farmacologia , Buspirona/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Piperidinas , Piridinas , Ratos , Receptor 5-HT1A de Serotonina , Serotonina , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Tetrabenazina
4.
Pharmacol Res Perspect ; 10(3): e00950, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466560

RESUMO

Sexual dimorphisms are observed in cannabinoid pharmacology. It is widely reported that female animals are more sensitive to the cataleptic, hypothermic, antinociceptive, and anti-locomotive effects of cannabinoid receptor agonists such as CP55,940. Despite awareness of these sex differences, there is little consideration for the pharmacodynamic differences within females. The mouse estrus cycle spans 4-5 days and consists of four sex hormone-mediated phases: proestrus, estrus, metestrus, and diestrus. The endocannabinoid system interacts with female sex hormones including ß-estradiol, which may influence receptor expression throughout the estrus cycle. In the current study, sexually mature female C57BL/6 mice in either proestrus or metestrus were administered either 1 mg/kg i.p. of the cannabinoid receptor agonist CP55,940 or vehicle. Mice then underwent the tetrad battery of behavioral assays measuring catalepsy, internal body temperature, thermal nociception, and locomotion. Compared with female mice in metestrus, those in proestrus were more sensitive to the anti-nociceptive effects of CP55,940. A similar trend was observed in CP55,940-induced catalepsy; however, this difference was not significant. As for cannabinoid receptor expression in brain regions underlying antinociception, the spine tissue of proestrus mice that received CP55,940 exhibited increased expression of cannabinoid receptor type 1 relative to treatment-matched mice in metestrus. These results affirm the importance of testing cannabinoid effects in the context of the female estrus cycle.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Estro , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Canabinoides
5.
Ann Pharm Fr ; 80(6): 853-863, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35240121

RESUMO

OBJECTIVES: Improving economy and well-being in developing nations like India has expanded life expectancy and changed the attention from transmittable to non transmittable diseases such as Parkinson's disease. Tabebuia impetiginosa has been utilized by cultivators as a general tonic, immunostimulant, adaptogen and also in motor disorders. The present investigation was to explore the antiparkinsonian activity of Tabebuia impetiginosa bark by experimental methods. MATERIALS AND METHODS: Control group-I was served with distilled water. Group-II was considered as pathological control [1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 2mg/nostrils i.n, Reserpine 40mg/kg s.c, Haloperidol 0.5mg/kg, i.p]. Group-III served with standard drug (Apomorphine 40mg/kg, s.c). Group IV and V received aqueous extract of Tabebuia impetiginosa bark in doses of 300 and 500mg/kg/day respectively. Tremor, hypokinesia, muscular rigidity, catatonia, postural immobility, postural instability and catalepsy were assessed for antiparkinsonian activity. RESULTS: The bark extract served group exhibited the increased levels of dopamine (5700±1.84ng/g) when compared to control groups (4300±3.17ng/g). The extract at both the doses displayed a significant reduction in postural flexion, moderate decrease in tremor, muscular rigidity and postural immobility scores but do not exhibit significant lowering of hypokinesia score in reserpine induced Parkinsonian model. The reduction in catatonia and catalepsy scores is more remarkable in case of high dose of extract (500mg/kg) compared to standard drug in Neuroleptic induced Parkinsonism. CONCLUSION: The findings demonstrate that Tabebuia impetiginosa bark extract has significant anti-cataleptic potentials and the antioxidant effect of the bark may also be a significant contributor to its antiparkinsonian activity.


Assuntos
Antipsicóticos , Catatonia , Tabebuia , Animais , Ratos , Casca de Planta , Dopamina/efeitos adversos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Antioxidantes/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Haloperidol/efeitos adversos , Reserpina/efeitos adversos , Hipocinesia , Apomorfina/efeitos adversos , Rigidez Muscular , Tremor , Antiparkinsonianos/efeitos adversos , Adjuvantes Imunológicos/efeitos adversos , Água , Encéfalo
6.
J Ethnopharmacol ; 285: 114864, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822958

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophularia buergeriana has been used for traditional medicine as an agent for reducing heat in the blood and for nourishing kidney 'Yin'. Therefore, S. buergeriana might be a potential treatment for mental illness, especially schizophrenia, which may be attenuated by supplying kidney Yin and reducing blood heat. In a pilot study, we found that S. buergeriana alleviated sensorimotor gating dysfunction induced by MK-801. AIM OF THE STUDY: In the present study, we attempted to reveal the active component(s) of S. buergeriana as a candidate for treating sensorimotor gating dysfunction, and we identified 4-methoxycinnamic acid. We explored whether 4-methoxycinnamic acid could affect schizophrenia-like behaviors induced by hypofunction of the glutamatergic neurotransmitter system. MATERIALS AND METHODS: Mice were treated with 4-methoxycinnamic acid (3, 10, or 30 mg/kg, i.g.) under MK-801-induced schizophrenia-like conditions. The effect of 4-methoxycinnamic acid on schizophrenia-like behaviors were explored using several behavioral tasks. We also used Western blotting to investigate which signaling pathway(s) is involved in the pharmacological activities of 4-methoxycinnamic acid. RESULTS: 4-Methoxycinnamic acid ameliorated MK-801-induced prepulse inhibition deficits, social interaction disorders and cognitive impairment by regulating the phosphorylation levels of PI3K, Akt and GSK-3ß signaling in the prefrontal cortex. And there were no adverse effects in terms of catalepsy and motor coordination impairments. CONCLUSION: Collectively, 4-methoxycinnamic acid would be a potential candidate for treating schizophrenia with fewer adverse effects, especially the negative symptoms and cognitive dysfunctions.


Assuntos
Cinamatos/uso terapêutico , Maleato de Dizocilpina/toxicidade , Esquizofrenia/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Cinamatos/química , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Medicina Tradicional , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/tratamento farmacológico , Scrophularia/química , Transdução de Sinais/efeitos dos fármacos
7.
Biomolecules ; 13(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671394

RESUMO

Parkinson's disease is the second most common neurodegenerative pathology. Due to the limitations of existing therapeutic approaches, novel anti-parkinsonian medicines with non-dopamine mechanisms of action are clearly needed. One of the promising pharmacological targets for anti-Parkinson drug development is phosphodiesterase (PDE) 10A. The stimulating motor effects of PDE10A inhibition were detected only under the conditions of partial dopamine depletion. The results raise the question of whether PDE10A inhibitors are able to restore locomotor activity when dopamine levels are very low. To address this issue, we (1) developed and validated the rat model of acute severe dopamine deficiency and (2) tested the action of PDE10A inhibitor MP-10 in this model. All experiments were performed in dopamine transporter knockout (DAT-KO) rats. A tyrosine hydroxylase inhibitor, α-Methyl-DL-tyrosine (αMPT), was used as an agent to cause extreme dopamine deficiency. In vivo tests included estimation of locomotor activity and catalepsy levels in the bar test. Additionally, we evaluated the tissue content of dopamine in brain samples by HPLC analysis. The acute administration of αMPT to DAT-KO rats caused severe depletion of dopamine, immobility, and catalepsy (Dopamine-Deficient DAT-KO (DDD) rats). As expected, treatment with the L-DOPA and carbidopa combination restored the motor functions of DDD rats. Strikingly, administration of MP-10 also fully reversed immobility and catalepsy in DDD rats. According to neurochemical studies, the action of MP-10, in contrast to L-DOPA + carbidopa, seems to be dopamine-independent. These observations indicate that targeting PDE10A may represent a new promising approach in the development of non-dopamine therapies for Parkinson's disease.


Assuntos
Levodopa , Doença de Parkinson , Animais , Ratos , Carbidopa , Catalepsia/complicações , Catalepsia/tratamento farmacológico , Dopamina , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia
8.
Psychopharmacology (Berl) ; 238(9): 2471-2483, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34002247

RESUMO

RATIONALE: Recently, it was found that cyclosomatostatin-induced catalepsy in middle-aged rats is accompanied by neuronal hypoactivation in the lateral entorhinal cortex (LEntCx); this hypoactivation was reversed by systemic administration of nicotine combined with diphenhydramine. These findings suggest the ability of nicotine to regulate catalepsy and the involvement of the LEntCx in this nicotine effect. OBJECTIVES: The study was aimed to assess whether nicotine alone influences catalepsy when injected into the LEntCx and some other neuroanatomical structures. METHODS: Experiments were conducted with male Wistar rats of 540-560 days of age. Catalepsy was induced by intracerebroventricular injection of cyclosomatostatin and assessed by the standard bar test. Nicotine was injected into the LEntCx, prelimbic cortex (PrCx), or basolateral amygdala (BLA). The tissue levels of tyrosine hydroxylase, dopamine, and DOPAC in the substantia nigra pars compacta and dorsal striatum were measured with use of HPLC and ELISA. RESULTS: Injections of nicotine into the LEntCx but not into the PrCx and BLA produced anticataleptic effect; the nicotine effect was significantly reversed by intra-LEntCx administration of NMDA and non-NMDA glutamate receptor antagonists. Nicotine also attenuated cataleptogen-induced changes in nigrostriatal dopamine metabolism. CONCLUSIONS: This may be the first demonstration of anticataleptic activity of nicotine. The results show that the effect is mediated by nicotine receptors in the LEntCx, via a glutamatergic mechanism. These findings may help advance the development of novel treatments for extrapyramidal disorders, including parkinsonism.


Assuntos
Córtex Entorrinal , Nicotina , Animais , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Antagonistas de Dopamina , Masculino , Nicotina/farmacologia , Ratos , Ratos Wistar
9.
Eur J Pharmacol ; 903: 174112, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901458

RESUMO

In the present study, we investigated the anti-Parkinson's effect of vanillic acid (VA) (12 mg/kg, 25 mg/kg, 50 mg/kg p.o.) against rotenone (2 mg/kg s.c.) induced Parkinson's disease (PD) in rats. The continuous administration of rotenone for 35 days resulted in rigidity in muscles, catalepsy, and decrease in locomotor activity, body weight, and rearing behaviour along with the generation of oxidative stress in the brain (rise in the TBARS, and SAG level and reduced CAT, and GSH levels). Co-treatment of VA and levodopa-carbidopa (100 mg/kg + 25 mg/kg p.o.) lead to a significant (P < 0.001) reduction in the muscle rigidity and catalepsy along with a significant (P < 0.001) increase in body weight, rearing behaviour, locomotion and muscle activity as compared to the rotenone-treated group in the dose dependent manner, showing maximum effect at the 50 mg/kg. It also showed reversal of levels of oxidative stress parameters thus, reducing the neuronal oxidative stress. The level of DA was also estimated which showed an increase in the level of DA in the VA plus standard drug treated animals as compared to rotenone treated group. Histopathological evaluation showed a high number of eosinophilic lesions in the rotenone group which were found to be very less in the VA co-treated group. The study thus proved that co-treatment of VA and levodopa-carbidopa, significantly protected the brain from neuronal damage due to oxidative stress and attenuated the motor defects indicating the possible therapeutic potential of VA as a neuroprotective in PD.


Assuntos
Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Carbidopa/farmacologia , Carbidopa/uso terapêutico , Catalase/metabolismo , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Modelos Animais de Doenças , Dopamina/metabolismo , Combinação de Medicamentos , Feminino , Glutationa/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/etiologia , Equilíbrio Postural/efeitos dos fármacos , Ratos Sprague-Dawley , Rotenona/toxicidade , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
10.
Bioorg Med Chem Lett ; 37: 127838, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556572

RESUMO

A high throughput screen (HTS) identified a novel, but weak (EC50 = 6.2 µM, 97% Glu Max) mGlu4 PAM chemotype based on a 1,4-thiazepane core, VU0544412. Reaction development and chemical optimization delivered a potent mGlu4 PAM VU6022296 (EC50 = 32.8 nM, 108% Glu Max) with good CNS penetration (Kp = 0.45, Kp,uu = 0.70) and enantiopreference. Finally, VU6022296 displayed robust, dose-dependent efficacy in reversing Haloperidol-Induced Catalepsy (HIC), a rodent preclinical Parkinson's disease model.


Assuntos
Catalepsia/tratamento farmacológico , Modelos Animais de Doenças , Descoberta de Drogas , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Catalepsia/induzido quimicamente , Relação Dose-Resposta a Droga , Haloperidol , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Receptores de Glutamato Metabotrópico/metabolismo , Relação Estrutura-Atividade
11.
Eur J Pharmacol ; 890: 173635, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33065094

RESUMO

F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.


Assuntos
Antipsicóticos/farmacologia , Benzopiranos/farmacologia , Antagonistas de Dopamina/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antipsicóticos/uso terapêutico , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Benzopiranos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalepsia/tratamento farmacológico , Células Cultivadas , Dopamina/metabolismo , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Genes fos/efeitos dos fármacos , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Piperazinas/uso terapêutico , Prolactina/sangue , Ratos Sprague-Dawley , Receptores de Dopamina D3/metabolismo , Sulfonamidas/uso terapêutico , Ácido Valproico/toxicidade
12.
Behav Brain Res ; 396: 112919, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956773

RESUMO

In the suited rat-models, we focused on the stable pentadecapeptide BPC 157, L-NAME, NOS-inhibitor, and L-arginine, NOS-substrate, relation, the effect on schizophrenia-like symptoms. Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), BPC 157 (0.01), given alone and/or together, at 5 min before the challenge for the acutely disturbed motor activity (dopamine-indirect/direct agonists (amphetamine (3.0), apomorphine (2.5)), NMDA-receptor non-competitive antagonist (MK-801 (0.2)), or catalepsy, (dopamine-receptor antagonist haloperidol (2.0)). Alternatively, BPC 157 10 µg/kg was given immediately after L-NAME 40 mg/kg intraperitoneally. To induce or prevent sensitization, we used chronic methamphetamine administration, alternating 3 days during the first 3 weeks, and challenge after next 4 weeks, and described medication (L-NAME, L-arginine, BPC 157) at 5 min before the methamphetamine at the second and third week. Given alone, BPC 157 or L-arginine counteracted the amphetamine-, apomorphine-, and MK-801-induced effect, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization. L-NAME did not affect the apomorphine-, and MK-801-induced effects, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization, but counteracted the acute amphetamine-induced effect. In combinations (L-NAME + L-arginine), as NO-specific counteraction, L-NAME counteracts L-arginine-induced counteractions in the apomorphine-, MK-801-, haloperidol- and methamphetamine-rats, but not in amphetamine-rats. Unlike L-arginine, BPC 157 maintains its counteracting effect in the presence of the NOS-blockade (L-NAME + BPC 157) or NO-system-over-stimulation (L-arginine + BPC 157). Illustrating the BPC 157-L-arginine relationships, BPC 157 restored the antagonization (L-NAME + L-arginine + BPC 157) when it had been abolished by the co-administration of L-NAME with L-arginine (L-NAME + L-arginine). Finally, BPC 157 directly inhibits the L-NAME high dose-induced catalepsy. Further studies would determine precise BPC 157/dopamine/glutamate/NO-system relationships and clinical application.


Assuntos
Anfetamina/farmacologia , Apomorfina/farmacologia , Arginina/farmacologia , Catalepsia , Maleato de Dizocilpina/farmacologia , Dopaminérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Haloperidol/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase , Fragmentos de Peptídeos/farmacologia , Proteínas/farmacologia , Esquizofrenia , Anfetamina/administração & dosagem , Animais , Apomorfina/administração & dosagem , Arginina/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Catalepsia/fisiopatologia , Modelos Animais de Doenças , Maleato de Dizocilpina/administração & dosagem , Dopaminérgicos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Haloperidol/administração & dosagem , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico Sintase/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Ratos , Ratos Wistar , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 717-734, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146779

RESUMO

Over the years, mounting evidences have suggested a strong association between chronic chlorpromazine therapy, a popular first-generation antipsychotic drug, and psycho-neuroendocrine changes. In this study, we aim to examine whether treatment with taurine and coenzyme Q10 (COQ-10), compounds with steroidogenic-gonadotropin hormone-enhancing properties, can attenuate the negative impacts of chlorpromazine on steroidogenic, gonadotropin, thyroid and HPA-axis hormones, dopamine levels, catalepsy behavior and neuronal cells of the hypothalamus and pituitary gland in the preventive and reversal treatments in male Wister rats. In the drug treatment alone or preventive protocol, rats received oral administration of saline (10 mL/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day), or both (taurine + COQ-10/day) alone for 56 consecutive days, or in combination with oral chlorpromazine (30 mg/kg/day) treatment from days 29 to 56. In the reversal protocol, the animals received chlorpromazine or saline for 56 days prior to taurine, COQ-10, or the combination from days 29 to 56. Thereafter, serum prolactin, steroidogenic (testosterone, estrogen, progesterone), gonadotropin (luteinizing hormone, LH, follicle-stimulating hormone, FSH), thyroid (thyrotropin-stimulating hormone, tetraiodothyronine, triiodothyronine) hormones, corticosterone, brain dopamine levels and cataleptic behavior were investigated. The histopathological features of the hypothalamus and pituitary gland were also evaluated. Taurine, COQ-10, or their combination prevented and reversed chlorpromazine-induced hyperprolactinemia, decrease in FSH, LH, testosterone, progesterone and dopamine concentrations, as well as the increase in estrogen levels. Taurine and COQ-10 reduced the changes in thyroid hormones, corticosterone release, histological distortions of the hypothalamus and the pituitary gland of chlorpromazine-treated rats. Taurine and COQ-10 attenuated chlorpromazine-induced catalepsy. The study showed that taurine and COQ-10 prevented and reversed chlorpromazine-induced changes in reproductive, thyroid hormones, dopamine level, corticosterone release, neurodegenerations, and cataleptic behavior in rats.


Assuntos
Antipsicóticos/efeitos adversos , Catalepsia/tratamento farmacológico , Clorpromazina/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Taurina/uso terapêutico , Ubiquinona/análogos & derivados , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalepsia/induzido quimicamente , Catalepsia/metabolismo , Catalepsia/patologia , Dopamina/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Hormônios/sangue , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Taurina/farmacologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
14.
Pharmacol Biochem Behav ; 198: 173035, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910928

RESUMO

Considerable evidence indicates that adenosine and dopamine systems interact in the regulation of basal ganglia function. Nonselective adenosine antagonists such as the methylxanthine caffeine as well as selective adenosine A2A antagonists have been shown to produce antiparkinsonian and antidepressant effects in animal models. The present studies were conducted to assess if another methylxantine, theophylline, can reverse motor and motivational impairments induced by dopamine antagonism in rats. RESULTS: Theophylline (3.75-30.0 mg/kg, IP) reversed tremulous jaw movements (TJMs), catalepsy, and locomotor suppression induced by the dopamine D2 antagonist pimozide. It also reversed TJMs induced by the muscarinic receptor agonist pilocarpine, which is a well-known tremorogenic agent. Parallel studies assessed the ability of theophylline (5.0-20.0 mg/kg, IP) to reverse the changes in effort-related choice behavior induced by the dopamine D1 antagonist ecopipam (0.2 mg/kg, IP) and the D2 antagonist haloperidol (0.1 mg/kg, IP). Rats were tested on two different operant choice tasks which assess the tendency to work for a preferred reinforcer by lever pressing (for palatable pellets or a high 5% sucrose solution) vs. approaching and consuming a less preferred reinforcer (freely available lab chow or a less concentrated 0.3% sucrose solution). Theophylline restored food and sucrose-reinforced lever pressing in animals treated with the D2 antagonist. However, it was unable to reverse the effects of the D1 antagonist. Overall, the effects of theophylline resembled those previously reported for adenosine A2A antagonists, and suggest that theophylline could be clinically useful for the treatment of motor and motivational symptoms in humans.


Assuntos
Comportamento de Escolha/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Teofilina/farmacologia , Tremor/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacologia , Catalepsia/tratamento farmacológico , Catalepsia/metabolismo , Condicionamento Operante/efeitos dos fármacos , Haloperidol/farmacologia , Humanos , Masculino , Motivação/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Pimozida/farmacologia , Ratos , Ratos Sprague-Dawley , Sacarose/farmacologia , Tremor/tratamento farmacológico
15.
Neurochem Res ; 45(11): 2786-2799, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32939670

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of dopaminergic, noradrenergic, and serotonergic systems, in which dopamine, noradrenaline, and serotonin levels are depleted and lead to the development of motor and non-motor symptoms such as tremor, bradykinesia, weight changes, fatigue, depression, and visual hallucinations. Therapeutic strategies place much focus on dopamine replacement and the inhibition of dopamine metabolism. The present study was based on the known abilities of chalcones to act as molecular scaffolds that selectively inhibit MAO-B with the added advantage of binding reversibly. Recently, we synthesized a series of 26 chalcone compounds, amongst which (2E)-1-(2H-1,3-benzodioxol-5-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O10) and (2E)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O23) most inhibited MAO-B. Hence, the present study was performed to explore the molecular mechanisms responsible for the neuroprotective effect of O10 and O23 at varying doses such as 10, 20, and 30 mg/kg each in a haloperidol-induced murine model of PD. Both compounds were effective (though O23 was the more effective) at ameliorating extrapyramidal and non-motor symptoms in the model and improved locomotory and exploratory behaviors, reduced oxidative stress markers, and enhanced antioxidant marker and neurotransmitter levels. Furthermore, histopathological studies showed O10 and O23 both reduced neurofibrillary tangles and plaques to almost normal control levels.


Assuntos
Catalepsia/tratamento farmacológico , Chalconas/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Catalepsia/induzido quimicamente , Dopamina/metabolismo , Haloperidol , Camundongos , Norepinefrina/metabolismo , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Serotonina/metabolismo
16.
Pharmacol Rep ; 71(6): 1050-1058, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605892

RESUMO

BACKGROUND: The effects of chemical products on the nervous system have been studied by various scientists. In this work, the antiparkinsonian action of a water-soluble form of harmine hydrochloride was studied. The present studies aim to research antiparkinsonian action of the harmine hydrochloride original compound. METHODS: To achieve the objective of the study, the authors used haloperidol-induced catalepsy and a method of Parkinson's syndrome (PS) induced by the MPTP (the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxin. The experiments were performed on rats and mice which were divided into groups of 10 animals. RESULTS: It was established that harmine hydrochloride (HH), at a certain dose, eliminated haloperidol-induced catalepsy in rats and reduced oligokinesia and rigidity in the parkinsonism test in mice. Seven days after the experiment, the authors found the presence of rigidity in animals which had received the neurotoxin. It manifested itself in a shortened stride length compared to this parameter in intact controls. CONCLUSIONS: During the study the efficacy of harmine hydrochloride was equivalent to the effects of levodopa at a certain dose, which suggested that harmine hydrochloride compensated dopamine deficiency in the brain.


Assuntos
Antiparkinsonianos/farmacologia , Catalepsia/tratamento farmacológico , Harmina/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Catalepsia/induzido quimicamente , Haloperidol/farmacologia , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Ratos
17.
J Pharm Pharmacol ; 71(8): 1271-1281, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31144300

RESUMO

OBJECTIVE: To investigate the effect of desferrioxamine (DFO) and dextromethorphan (DXM) combination in animal model of Parkinson's disease (PD). METHODS: The PD was induced in rats through intracerebroventricular administration of 6-hydroxydopamine (6-OHDA) using stereotaxic apparatus. The animals were subjected to behavioural assessments and neurobiochemicals estimation followed by immunohistochemistry staining of neuron specific enolase (NSE) in striatum. KEY FINDINGS: Desferrioxamine and DXM combination has significantly reversed the catalepsy behaviour and elevated the antioxidant enzymes (SOD, CAT, GSH) and dopamine levels. Interestingly, the level of glutamate, nitric oxide, cytokines (IL-1ß, TNF-α) and NSE expressions were found to be decreased in striatum region of 6-OHDA-administered rats. The combination of DFO and DXM has shown synergism in most of the parameters studied, when compared to per se treatment. CONCLUSIONS: The reversal of catalepsy behaviour represents the protective effect of above combination on dopamine neurons in striatum from 6-OHDA toxicity. The mechanism of DFO and DXM combination might be attributed through attenuation of glutamate-induced excitotoxicity in neurons through ameliorating the reactive oxygen species and pro-inflammatory cytokines release. Treatment with DFO and DXM combination could control the multiple events in the pathogenesis of PD.


Assuntos
Catalepsia/tratamento farmacológico , Corpo Estriado/efeitos dos fármacos , Desferroxamina/farmacologia , Dextrometorfano/farmacologia , Ácido Glutâmico/metabolismo , Hidroxidopaminas/farmacologia , Animais , Antioxidantes/farmacologia , Catalepsia/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar
18.
Metab Brain Dis ; 34(4): 1191-1199, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31055785

RESUMO

Neuroinflammation plays a key role in progressive degeneration of dopaminergic cells. Upregulation of prostaglandins and free radicals formation are involved in the mechanisms of cell death in Parkinson's disease (PD). The present study aimed to investigate the neuroprotective effect of diclofenac against chlorpromazine (CPZ) induced catalepsy and motor impairment in mice. Adult Wistar rats treated with CPZ (3 mg/kg/day, IP) were orally dosed with diclofenac and L-dopa/carbidopa for 21 days. Catalepsy was measured after 21 days of dosing by using standard bar test at 30, 60, 90, 120 and 180 min then motor performances were assessed via open field test and wire hanging test. Histopathological investigation and determination of dopamine (DA) and 3,4-Dihydroxyphenylacetic acid (DOPAC) levels of rat's brain was also carried out. We found that CPZ treated group exhibited reduced motor impairment after 21 days of treatment in open field and wire hanging test (P < 0.01) as compared to control group. The cataleptic scores of CPZ treated rats were also significantly increased (P < 0.01) after 21 days of chronic dosing, however diclofenac treated groups showed significant reduction in cataleptic scores with improved motor performances. Histopathology of CPZ treated rats showed marked degeneration with architecture distortion in the mid brain region. Dopaminergic degeneration is confirmed by neurochemical results that showed reduced amount of dopamine and DOPAC levels in mid brain. Moreover, histopathological slides of diclofenac treated rats showed improved architecture with reduced gliosis of mid brain region as well as improved dopamine and DOPAC levels were achieved after 21 days dosing of diclofenac. Taken together, the present work provide an evidence that diclofenac ameliorated behavioral performances by mediating neuroprotection against CPZ induced PD via preventing dopaminergic neuronal cell death.


Assuntos
Catalepsia/tratamento farmacológico , Clorpromazina , Diclofenaco/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Carbidopa/farmacologia , Carbidopa/uso terapêutico , Catalepsia/induzido quimicamente , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Diclofenaco/farmacologia , Dopamina/metabolismo , Feminino , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Psychopharmacology (Berl) ; 236(11): 3125-3133, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31069424

RESUMO

RATIONALE: Some antidepressants have been previously found to produce anti-parkinsonian effect; nicotine was known to mitigate experimental neurotoxic lesions. The anticataleptic efficacy of antidepressant-nicotine co-administration is unstudied. OBJECTIVES: This work aimed to evaluate anticataleptic action of imipramine-nicotine combination in rotenone model. METHODS: Catalepsy was measured by the bar test. Concentrations of tyrosine hydroxylase, dopamine, and DOPAC were determined in the substantia nigra and dorsal striatum using ELISA and HPLC techniques; additionally, dopamine/DOPAC ratio was calculated for both areas. RESULTS: Imipramine and nicotine alone were ineffective; however, co-administration of the drugs significantly (p < 0.01) inhibited rotenone-induced catalepsy and mitigated neurochemical changes in the nigrostriatal system. Anticataleptic effect of the combination exceeded that of levodopa, a standard drug for anti-parkinsonian treatment. CONCLUSION: The combined use of imipramine and nicotine at relatively low doses inhibits neurotoxin-induced catalepsy and nigrostriatal neurochemical changes. The co-administration of these drugs might be a new approach to the treatment of extrapyramidal dysfunctions.


Assuntos
Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Modelos Animais de Doenças , Imipramina/administração & dosagem , Nicotina/administração & dosagem , Rotenona/toxicidade , Inibidores da Captação Adrenérgica/administração & dosagem , Animais , Antidepressivos/administração & dosagem , Relação Dose-Resposta a Droga , Inseticidas/toxicidade , Masculino , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia
20.
Int J Med Mushrooms ; 21(4): 323-330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002628

RESUMO

Haloperidol-induced catalepsy is an animal model of a psychotic disorder that may be associated with neurodegeneration and free radical damage. Auricularia polytricha is effective in both prevention and treatment of numerous types of neurological disorders. In the present study, anticataleptic activity of aqueous extract of A polytricha (AEAP) at different doses (400 and 600 mg/kg, respectively, p.o.) was studied using haloperidol-induced (1 mg/ kg, i.p.) catalepsy in rats. Repeated treatment with haloperidol (1 mg/kg, i.p.) on each other day for 15 days (days 5, 10, and 15) significantly induced catalepsy in rats. The effect of AEAP at different doses (400 and 600 mg/kg, p.o.) on levels of superoxide dismutase, catalase, and glutathione reductase as well as inhibition of lipid peroxidation in the forebrain region was assessed. After 15 days of treatment, AEAP (400 and 600 mg/kg) significantly inhibited haloperidol-induced catalepsy. Treatment with AEAP (400 and 600 mg/kg) exhibited significant elevation in the levels of superoxide dismutase, catalase, and glutathione reductase as well as lipid peroxidation in the forebrain region compared to the haloperidol-treated group. The study concludes that AEAP (400 and 600 mg/kg) significantly protects animals against haloperidol-induced catalepsy.


Assuntos
Basidiomycota/química , Catalepsia/tratamento farmacológico , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antipsicóticos/efeitos adversos , Catalepsia/induzido quimicamente , Modelos Animais de Doenças , Carpóforos/química , Haloperidol/efeitos adversos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...