Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Planta ; 260(3): 73, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150569

RESUMO

MAIN CONCLUSION: The ultrastructural design and biochemical organization of the significantly thickened outer tissues of the gametophytic stem of Hypnodendron menziesii optimizes load bearing of the stem. Hypnodendron menziesii is a bryoid umbrella moss growing in high humid conditions on the forest floors of New Zealand. The erect gametophyte bears up to eight whorls of branches in succession, spreading across the stem that bears the heavy weight of branches with highly hydrated leaves. Our investigation using a combination of light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and TEM-immunolabeling techniques provided novel information on the structural design and biochemical organization of greatly thickened cell walls of epidermal, hypodermal, and outermost cortical tissues, comparing underlying thin-walled cortical tissues in the gametophytic stem. Probing into the ultrastructure of the cell wall architecture of these target tissues by TEM and SEM revealed the cell walls to display a multilamellar organization, in addition to demonstrating the presence of an electron-dense substance in the cell wall, presumably flavonoids. The pattern of distribution and concentration of rhamnogalacturonan, homogalacturonan, and heteromannan, as determined by immunogold labeling, suggests that it is the combination of structural and molecular design of the cell wall that may optimize the mechanical function of the epidermal, hypodermal, and outer cortical tissues. Statistical relationships between the overall thickness of epidermal, hypodermal, and outer cortical cell walls, the lumen area of cells and the percentage area of cell wall occupied in these tissues at different heights of the stem, and thickness of secondary cell wall layers (L1-L4/5) were explored. The results of these analyses unequivocally support the contribution of outer tissues to the mechanical strength of the resilient stem.


Assuntos
Parede Celular , Caules de Planta , Parede Celular/ultraestrutura , Caules de Planta/ultraestrutura , Microscopia Eletrônica de Varredura , Células Germinativas Vegetais/ultraestrutura , Bryopsida/ultraestrutura , Microscopia Eletrônica de Transmissão
2.
J Agric Food Chem ; 72(33): 18347-18352, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39120622

RESUMO

Common agronomic practices such as stem topping, side branch removal, and girdling can induce wound priming, mediated by jasmonic acid (JA). Low light conditions during greenhouse tomato production make the leaves more sensitive to the application of exogenous sugar, which is perceived as a "danger" in accordance with the concept of "Sweet Immunity". Consequently, source-sink balances are altered, leading to the remobilization of stem starch reserves and enabling the redirection of more carbon toward developing fruits, thereby increasing tomato yield and fruit quality. Similarities are drawn with the mobilization of fructans following defoliation of fodder grasses (wounding) and the remobilization of fructan and starch reserves under terminal drought and heat stress in wheat and rice (microwounding, cellular leakage). A central role for JA signaling is evident in all of these processes, closely intertwining with sugar signaling pathways. Therefore, JA signaling, associated with wounding and sugar priming events, offers numerous opportunities to alter source-sink balances across a broader spectrum of agricultural and horticultural crops, for instance, through the exogenous application of JA and fructans or a combination. This may entail reconfiguring and reversing phloem connections, potentially leading to an enhanced yield and product quality. Such processes may also disengage the growth-defense trade-off in plants.


Assuntos
Ciclopentanos , Oxilipinas , Caules de Planta , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/imunologia , Caules de Planta/metabolismo , Caules de Planta/efeitos dos fármacos , Solanum lycopersicum/imunologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
3.
J Pharm Biomed Anal ; 249: 116388, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39089200

RESUMO

Physalis alkekengi L.var. franchetii (Mast.) Makino (PAF) is an important edible and medicinal plant resource in China. Historically, phytochemical studies have primarily examined the calyx and fruit due to their long-standing use in traditional Chinese medicine for their ability to clear heat and detoxify. Metabolites and bioactivities of other parts such as the leaves, stems and roots, are rarely studied. The study involved conducting metabolic profiling of five plant parts of PAF using UPLC-Q-Orbitrap-HRMS analysis, in conjunction with two bioactivity assays. A total of 95 compounds were identified, including physalins, flavonoids, sucrose esters, phenylpropanoids, nitrogenous compounds and fatty acids. Notably, 14 aliphatic sucrose esters, which are potentially novel compounds, were initially identified. Furthermore, one new aliphatic sucrose ester was purified and its structure was elucidated by 1D and 2D NMR analysis. The hierarchical clustering analysis and principal component analysis showed the close clustering of the root and stem, suggesting similarities in their chemical composition, whereas the leaf, calyx and fruit clustered more distantly. Orthogonal partial least-squares discriminant analysis results showed that 41 compounds potentially serve as marker compounds for distinguishing among plant parts. Variations in activity were observed among the plant parts during the comparative evaluation with biological assays. The calyx, leaf and fruit extracts showed stronger antibacterial and anti-inflammatory activities than the stem and root extracts, and 19 potential biomarkers were identified by S-plot analysis for the observed activities, including chlorogenic acid, luteolin, cynaroside, physalin A, physalin F, physalin J, apigetrin, quercetin-3ß-D-glucoside and five ASEs, which likely explain the observed potent bioactivity.


Assuntos
Metabolômica , Physalis , Extratos Vegetais , Physalis/química , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Frutas/química , Animais , Espectrometria de Massas/métodos , Raízes de Plantas/química , Caules de Planta/química , Metaboloma , Plantas Medicinais/química , Camundongos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química
4.
Gene ; 929: 148828, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39122229

RESUMO

Perilla (Perilla frutescens L.) is a time-honored herbal plant with widespread applications in both medicine and culinary practices around the world. Profiling the essential organs and tissues with medicinal significance on a global scale offers valuable insights for enhancing the yield of desirable compounds in Perilla and other medicinal plants. In the present study, genome-wide RNA-sequencing (RNA-seq) and assessing the global spectrum of metabolites were carried out in the two major organs/tissues of stem (PfST) and leaf (PfLE) in Perilla. The results showed a total of 18,490 transcripts as the DEGs (differentially expressed genes) and 144 metabolites as the DAMs (differentially accumulated metabolites) through the comparative profiling of PfST vs PfLE, and all the DEGs and DAMs exhibited tissue-specific trends. An association analysis between the transcriptomics and metabolomics revealed 14 significantly enriched pathways for both DEGs and DAMs, among which the pathways of Glycine, serine and threonine metabolism (ko00260), Glyoxylate and dicarboxylate metabolism (ko00630), and Glucagon signaling pathway (ko04922) involved relatively more DEGs and DAMs. The results of qRT-PCR assays of 18 selected DEGs confirmed the distinct tissue-specific characteristics of all identified DEGs between PfST and PfLE. Notably, all eight genes associated with the flavonoid biosynthesis/metabolism pathways exhibited significantly elevated expression levels in PfLE compared to PfST. This observation suggests a heightened accumulation of metabolites related to flavonoids in Perilla leaves. The findings of this study offer a comprehensive overview of the organs and tissues in Perilla that have medicinal significance.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Folhas de Planta , Caules de Planta , Transcriptoma , Folhas de Planta/metabolismo , Folhas de Planta/genética , Metabolômica/métodos , Caules de Planta/metabolismo , Caules de Planta/genética , Perfilação da Expressão Gênica/métodos , Perilla frutescens/genética , Perilla frutescens/metabolismo , Perilla/genética , Perilla/metabolismo
5.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125770

RESUMO

Enhancing stalk strength is a crucial strategy to reduce lodging. We identified a maize inbred line, QY1, with superior stalk mechanical strength. Comprehensive analyses of the microstructure, cell wall composition, and transcriptome of QY1 were performed to elucidate the underlying factors contributing to its increased strength. Notably, both the vascular bundle area and the thickness of the sclerenchyma cell walls in QY1 were significantly increased. Furthermore, analyses of cell wall components revealed a significant increase in cellulose content and a notable reduction in lignin content. RNA sequencing (RNA-seq) revealed changes in the expression of numerous genes involved in cell wall synthesis and modification, especially those encoding pectin methylesterase (PME). Variations in PME activity and the degree of methylesterification were noted. Additionally, glycolytic efficiency in QY1 was significantly enhanced. These findings indicate that QY1 could be a valuable resource for the development of maize varieties with enhanced stalk mechanical strength and for biofuel production.


Assuntos
Hidrolases de Éster Carboxílico , Parede Celular , Regulação da Expressão Gênica de Plantas , Caules de Planta , Zea mays , Zea mays/genética , Zea mays/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Caules de Planta/metabolismo , Caules de Planta/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Celulose/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126014

RESUMO

Stem strength plays a crucial role in the growth and development of plants, as well as in their flowering and fruiting. It not only impacts the lodging resistance of crops, but also influences the ornamental value of ornamental plants. Stem development is closely linked to stem strength; however, the roles of the SPL transcription factors in the stem development of herbaceous peony (Paeonia lactiflora Pall.) are not yet fully elucidated. In this study, we obtained and cloned the full-length sequence of PlSPL14, encoding 1085 amino acids. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of PlSPL14 gradually increased with the stem development of P. lactiflora and was significantly expressed in vascular bundles. Subsequently, utilizing the techniques of virus-induced gene silencing (VIGS) and heterologous overexpression in tobacco (Nicotiana tabacum L.), it was determined that PlSPL14-silenced P. lactiflora had a thinner xylem thickness, a decreased stem diameter, and weakened stem strength, while PlSPL14-overexpressing tobacco resulted in a thicker xylem thickness, an increased stem diameter, and enhanced stem strength. Further screening of the interacting proteins of PlSPL14 using a yeast two-hybrid (Y2H) assay revealed an interactive relationship between PlSPL14 and PlSLR1 protein, which acts as a negative regulator of gibberellin (GA). Additionally, the expression level of PlSLR1 gradually decreased during the stem development of P. lactiflora. The above results suggest that PlSPL14 may play a positive regulatory role in stem development and act in the xylem, making it a potential candidate gene for enhancing stem straightness in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Paeonia , Proteínas de Plantas , Caules de Planta , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paeonia/genética , Paeonia/crescimento & desenvolvimento , Paeonia/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Xilema/genética , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clonagem Molecular , Filogenia
7.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124082

RESUMO

Dragon fruit stem disease significantly affects both the quality and yield of dragon fruit. Therefore, there is an urgent need for an efficient, high-precision intelligent detection method to address the challenge of disease detection. To address the limitations of traditional methods, including slow detection and weak micro-integration capability, this paper proposes an improved YOLOv8-G algorithm. The algorithm reduces computational redundancy by introducing the C2f-Faster module. The loss function was modified to the structured intersection over union (SIoU), and the coordinate attention (CA) and content-aware reorganization feature extraction (CARAFE) modules were incorporated. These enhancements increased the model's stability and improved its accuracy in recognizing small targets. Experimental results showed that the YOLOv8-G algorithm achieved a mean average precision (mAP) of 83.1% and mAP50:95 of 48.3%, representing improvements of 3.3% and 2.3%, respectively, compared to the original model. The model size and floating point operations per second (FLOPS) were reduced to 4.9 MB and 6.9 G, respectively, indicating reductions of 20% and 14.8%. The improved model achieves higher accuracy in disease detection while maintaining a lighter weight, serving as a valuable reference for researchers in the field of dragon fruit stem disease detection.


Assuntos
Algoritmos , Cactaceae , Frutas , Caules de Planta , Cactaceae/química , Frutas/química , Doenças das Plantas , Caules de Planta/química
8.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124956

RESUMO

Eupatorium lindleyanum DC. (EL) is a traditional Chinese herb known for its phlegm-reducing, cough-relieving and asthma-calming properties. It is widely used for treating cough and bronchitis. However, preliminary experiments have revealed wide variations in the composition of its different medicinal parts (flowers, leaves and stems), and the composition and efficacy of its different medicinal parts remain largely underexplored at present. In this study, non-targeted rapid resolution liquid chromatography coupled with a quadruple time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics approach was developed to investigate the differences in the chemical composition of different medicinal parts of EL. We identified or tentatively identified 9 alkaloids, 11 flavonoids, 14 sesquiterpene lactones, 3 diterpenoids and 24 phenolic acids. In addition, heatmap visualization, quantitative analysis by high-performance liquid chromatography (HPLC-PDA) and ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-MS/MS) showed particularly high levels of sesquiterpene lactones, flavonoids and phenolic acids in the flowers, such as eupalinolide A and B and chlorogenic acid, among others. The leaves also contained some flavonoid sesquiterpene lactones and phenolic acids, while the stems were almost absent. The findings of in vitro activity studies indicated that the flowers exhibited a notable inhibitory effect on the release of the inflammatory factors TNF-α and IL-6, surpassing the anti-inflammatory efficacy observed in the leaves. Conversely, the stems demonstrated negligible anti-inflammatory activity. The variations in anti-inflammatory activity among the flowers, leaves and stems of EL can primarily be attributed to the presence of flavonoids, phenolic acids and sesquiterpene lactones in both the flowers and leaves. Additionally, the flowers contain a higher concentration of these active components compared to the leaves. These compounds mediate their anti-inflammatory effects through distinct biochemical pathways. The results of this study are anticipated to provide a scientific basis for the rational and effective utilization of EL resources.


Assuntos
Anti-Inflamatórios , Eupatorium , Espectrometria de Massas em Tandem , Eupatorium/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Folhas de Planta/química , Animais , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/análise , Metaboloma , Metabolômica/métodos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Flores/química , Caules de Planta/química , Plantas Medicinais/química
9.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124959

RESUMO

The objective of this study was to analyze the chemical composition and evaluate the biological capabilities of the essential oils (EOs) extracted from leaves and stems of wild Aeschynomene indica L. plants by the hydrodistillation method. By using GC-FID/MS, fifty-six and fifty-five compounds, representing 95.1 and 97.6% of the essential oils in the leaves and stems, respectively, were characterized. The predominant constituents of A. indica EOs were (E)-caryophyllene, linalool, viridiflorol, phytol, hexadecanoic acid, trans-verbenol, and α-guaiene. The antibacterial and synergistic activities of the EOs were assessed by microdilution and checkerboard assays. The results revealed a potent inhibition and bactericidal activity against Staphylococcus aureus and Bacillus subtilis with MICs of 0.312-0.625 mg/mL. When combined with traditional antibiotics, the essential oils of A. indica possessed excellent synergistic effects against all tested bacteria. Additionally, the EOs of A. indica leaves showed higher antioxidant activity (IC50 = 0.11 ± 0.01 µg/mL) compared to the stem oil (IC50 = 0.19 ± 0.01 µg/mL) using the ABTS radical scavenging assay. The in vitro cytotoxicity of EOs against human cancer cell lines HepG2, MCF-7, A-549, and HCT-116 was examined, and MTT assays showed that the EOs possessed a significant cytotoxic potential against MCF-7 breast cancer cells, with IC50 values of 10.04 ± 1.82 and 15.89 ± 1.66 µg/mL, and a moderate cytotoxic activity against other tested cells. In conclusion, the A. indica EOs could be considered a potential source of pharmacologically active compounds.


Assuntos
Antibacterianos , Antioxidantes , Testes de Sensibilidade Microbiana , Óleos Voláteis , Folhas de Planta , Caules de Planta , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Folhas de Planta/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Caules de Planta/química , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular Tumoral , Staphylococcus aureus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
PeerJ ; 12: e17633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948208

RESUMO

Wheat stem rust, which is caused by Puccinia graminis f. sp. tritici (Pgt), is a highly destructive disease that affects wheat crops on a global scale. In this study, the reactions of 150 bread wheat varieties were evaluated for natural Pgt infection at the adult-plant stage in the 2019-2020 and 2020-2021 growing seasons, and they were analyzed using specific molecular markers to detect stem rust resistance genes (Sr22, Sr24, Sr25, Sr26, Sr31, Sr38, Sr50, and Sr57). Based on phenotypic data, the majority of the varieties (62%) were resistant or moderately resistant to natural Pgt infection. According to molecular results, it was identified that Sr57 was present in 103 varieties, Sr50 in nine varieties, Sr25 in six varieties, and Sr22, Sr31, and Sr38 in one variety each. Additionally, their combinations Sr25 + Sr50, Sr31 + Sr57, Sr38 + Sr50, and Sr38 + Sr57 were detected in these varieties. On the other hand, Sr24 and Sr26 were not identified. In addition, many varieties had low stem rust scores, including a large minority that lacked Sr57. These varieties must have useful resistance to stem rust and could be the basis for selecting greater, possibly durable resistance.


Assuntos
Resistência à Doença , Variação Genética , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/patogenicidade , Variação Genética/genética , Caules de Planta/microbiologia , Caules de Planta/imunologia , Caules de Planta/genética , Genes de Plantas , Basidiomycota/patogenicidade
11.
Huan Jing Ke Xue ; 45(7): 4023-4031, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022950

RESUMO

Nitrogen loss from rice systems is an important source of agricultural non-point source pollution. Many studies revolve around reducing the rate of nitrogen fertilizer application. However, studies examining the characteristics of nitrogen loss in multiple loss paths (runoff, leaching, and lateral seepage) under different straw and fertilizer managements are lacking. Therefore, a study was carried out based on a rice field planted for more than 20 years with straw continuously returned to the field for more than 5 years in Taihu lake basin. The effects of straw and fertilizer managements on nitrogen loss in different paths during the whole growth period of rice were studied. Moreover, straw and fertilizer managements were evaluated by their production suitability and environmental friendliness based on crop yield, nitrogen use efficiency, and nitrogen loss. The results showed that straw removal from the field increased the response sensitivity of nitrogen accumulation in plant tissue to nitrogen application. The nitrogen loss in the rice season was 9-17 kg·hm-2, accounting for 5%-7% of the nitrogen application rate. Straw removal increased the risk of nitrogen loss when soaking water discharged. Straw returning could decrease the nitrogen loss by more than 15%, though the effect of straw on nitrogen loss via lateral seepage was not clear. Furthermore, the suitable substitution of organic fertilizer (30% in this study) could respectively reduce the amount of nitrogen loss via runoff, leaching, and lateral seepage by 16%, 26%, and 37% compared with the fertilizer application under the same nitrogen gradient. In conclusion, the implementation of straw returning and fertilizer type optimization measures effectively reduced the nitrogen loss for unit weight of rice production and realized the balance between agricultural production and environmental protection.


Assuntos
Fertilizantes , Lagos , Nitrogênio , Oryza , Caules de Planta , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Nitrogênio/metabolismo , China , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/química , Agricultura/métodos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo
12.
Huan Jing Ke Xue ; 45(7): 4228-4240, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022969

RESUMO

In order to elucidate the changes in the soil fungal community and soil organic carbon components of a Jasminum sambac garden after straw and biochar application, we measured the organic carbon components and soil fungal community of the 0-15 cm soil layer in a J. sambac garden, which was divided into a control group, straw treatment group, and biochar treatment group. The carbon pool management index (CPMI) was also calculated. The results showed that the diversity of the soil fungal community was decreased after straw and biochar application, and the structure of dominant fungal genera was changed in each treatment. The soil fungal community structure in the biochar treatment was significantly different from that in the straw treatment and control groups. Redundancy analysis (RDA) showed that soil fungal community structure was mainly affected by soil bulk density, C∶N, salinity, and TN. Secondly, compared with that in the control group, soil labile organic carbon (LOC) in the straw treatment group was significantly increased by 87.44% (P<0.05), whereas soil dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in the biochar treatment group were significantly increased by 22.27% and 23.17% (P<0.05), respectively. Further, compared with that in the control group, the carbon pool activity (L) under straw treatment was significantly increased (P<0.05), and the carbon pool index (CPI) under biochar treatment was significantly increased (P<0.05). Spearman correlation analysis showed that the distribution characteristics of soil organic carbon active components were regulated by the dominant fungi. FUNGuild functional prediction results showed that saprophytic and its facultative nutritional fungi had an important impact on soil organic carbon active components and carbon pool management index after straw and biochar application.


Assuntos
Carbono , Carvão Vegetal , Fungos , Compostos Orgânicos , Caules de Planta , Microbiologia do Solo , Solo , Carvão Vegetal/química , Fungos/metabolismo , Solo/química , Caules de Planta/química , Caules de Planta/metabolismo , Fertilizantes
13.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000352

RESUMO

A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Caules de Planta/metabolismo , Caules de Planta/genética , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Lignina/metabolismo , Lignina/biossíntese , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Plantas Geneticamente Modificadas/genética
14.
BMC Plant Biol ; 24(1): 629, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961339

RESUMO

Twisted trunks are not uncommon in trees, but their effects on tree growth are still unclear. Among coniferous tree species, the phenomenon of trunk distortion is more prominent in Pinus yunnanensis. To expand the germplasm of genetic resources, we selected families with excellent phenotypic traits to provide material for advanced generation breeding. The progeny test containing 93 superior families (3240 trees) was used as the research material. Phenotypic measurements and estimated genetic parameters (family heritability, realistic gain and genetic gain) were performed at 9, 15, and 18 years of age, respectively. The genetic evaluation yielded the following results (1) The intra-family variance component of plant height (PH) was greater than that of the inter-family, while the inter-family variance components of other traits (diameter at breast height (DBH), crown diameter (CD), height under branches (HUB), degree of stem-straightness (DS)) were greater than that of the intra-family, indicating that there was abundant variation among families and potential for selection. (2) At half rotation period (18 years old), there was a significant correlation among the traits. The proportion of trees with twisted trunks (level 1-3 straightness) reached 48%. The DS significantly affected growth traits, among which PH and DBH were the most affected. The volume loss rate caused by twisted trunk was 18.06-56.75%, implying that trunk distortion could not be completely eliminated after an artificial selection. (3) The influence of tree shape, crown width, and trunk on volume increased, and the early-late correlation between PH, DBH and volume was extremely significant. The range of phenotypic coefficient of variation, genetic variation coefficient and family heritability of growth traits (PH, DBH, and volume) were 44.29-127.13%, 22.88-60.87%, and 0.79-0.83, respectively. (4) A total of 21 superior families were selected by the method of membership function combined with independent selection. Compared with the mid-term selection (18 years old), the accuracy of early selection (9 years old) reached 77.5%. The selected families' genetic gain and realistic gain range were 5.79-19.82% and 7.12-24.27%, respectively. This study can provide some useful reference for the breeding of coniferous species.


Assuntos
Fenótipo , Pinus , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/anatomia & histologia , Melhoramento Vegetal
15.
Funct Plant Biol ; 512024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008621

RESUMO

One strategy to improve olive (Olea europaea ) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (-AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20days); (3) long-period drought (25days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and -) and B(+ and -) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.


Assuntos
Micorrizas , Olea , Rizosfera , Água , Olea/microbiologia , Micorrizas/fisiologia , Água/metabolismo , Secas , Prolina/metabolismo , Simbiose , Estômatos de Plantas/fisiologia , Caules de Planta/microbiologia , Raízes de Plantas/microbiologia , Malondialdeído/metabolismo
16.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000470

RESUMO

Agave tequilana stems store fructan polymers, the main carbon source for tequila production. This crop takes six or more years for industrial maturity. In conducive conditions, agave wilt disease increases the incidence of dead plants after the fourth year. Plant susceptibility induced for limited photosynthates for defense is recognized in many crops and is known as "sink-induced loss of resistance". To establish whether A. tequilana is more prone to agave wilt as it ages, because the reduction of water-soluble carbohydrates in roots, as a consequence of greater assembly of highly polymerized fructans, were quantified roots sucrose, fructose, and glucose, as well as fructans in stems of agave plants of different ages. The damage induced by inoculation with Fusarium solani or F. oxysporum in the roots or xylem bundles, respectively, was recorded. As the agave plant accumulated fructans in the stem as the main sink, the amount of these hexoses diminished in the roots of older plants, and root rot severity increased when plants were inoculated with F. solani, as evidence of more susceptibility. This knowledge could help to structure disease management that reduces the dispersion of agave wilt, dead plants, and economic losses at the end of agave's long crop cycle.


Assuntos
Agave , Frutanos , Fusarium , Doenças das Plantas , Raízes de Plantas , Agave/microbiologia , Agave/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Frutanos/metabolismo , Doenças das Plantas/microbiologia , Fusarium/patogenicidade , Hexoses/metabolismo , Caules de Planta/microbiologia , Caules de Planta/metabolismo
17.
J Tradit Chin Med ; 44(4): 804-712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39066541

RESUMO

OBJECTIVE: To evaluate phytochemicals and in vitro biological potential of flowers, leaves and stem extracts of Rosa arvensis. METHODS: Presence of twenty secondary metabolites was confirmed and then phenolic and flavonoid contents were quantified spectrophotometrically. Fourier Transform Infrared spectroscopy was conducted to ascertain functional groups and antioxidant potential was examined using 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant capacity and total reducing power assays. Human erythrocytes were used to assess anti-hemolytic activity and five bacterial strains were examined to determine antibacterial potential of plant extracts. Radish seeds were used to perform phytotoxic activity and cytotoxic potential was evaluated via brine shrimps and PC3 cell lines. RESULTS: Highest phenolic contents were detected in the methanolic extract of Rosa arvensis flower (RAFM) [(151.635 ± 0.005) gallic acid equivalent mg/g] and highest flavonoid contents in the chloroform leaf extract (RALC) [(108.228 ± 0.004) quercetin equivalent mg/g]. Fourier-transform infrared spectroscopy analysis showed the presence of wide range of functional groups. The antioxidant assays indicated highest DPPH scavenging activity [IC50 (23.5 ± 0.6) µg/mL] in the methanolic stem extract (RASM), highest total antioxidant capacity [(265.1 ± 0.9) µg/mL] in RAFM and highest reducing potential [(209.9 ± 0.6) µg/mL] in leaf extract (RALM). Highest anti-hemolytic activity [(90.0 ± 0.5) µg/mL] was recorded in RAFM and brine shrimp cytotoxicity potential [(52.3 ± 0.3) µg/mL] in RASM. The antimicrobial activity was detected highest [(21.1 ± 0.5) mm inhibition zones] in RALM against Streptococcus aureus. In the end, anti-inflammatory and anti-cancer activity results depicted less than 50 % inhibition in the methanolic extracts. CONCLUSIONS: Our findings will be helpful in designing pharmaceutical regimens and therefore, more studies can be recommended to isolate and characterize compounds associated with the biological activities of Rosa arvensis.


Assuntos
Anti-Inflamatórios , Antioxidantes , Flores , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Folhas de Planta/química , Flores/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Caules de Planta/química , Hemólise/efeitos dos fármacos , Rosa/química , Artemia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
18.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059847

RESUMO

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Assuntos
Coffea , Cordyceps , Endófitos , Filogenia , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/fisiologia , Cordyceps/genética , Cordyceps/classificação , Coffea/microbiologia , Coffea/parasitologia , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Etiópia , DNA Fúngico/genética , DNA Fúngico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Caules de Planta/microbiologia , Caules de Planta/parasitologia , Análise de Sequência de DNA , Análise por Conglomerados
19.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959856

RESUMO

Vulnerability curves (VCs) have been measured extensively to describe the differences in plant vulnerability to cavitation. Although the roles of hydraulic conductivity (Ks,max) and hydraulic safety (P50, embolism resistance), both of which are parameters of VCs ('sigmoidal' type), in tree demography have been evaluated across different forests, the direct linkages between VCs and tree demography are rarely explored. In this study, we combined measured VCs and plot data of 16 tree species in Panamanian seasonal tropical forests to investigate the connections between VCs and tree mortality, recruitment and growth. We found that the mortality and recruitment rates of evergreen species were most significantly positively correlated with P50. However, the mortality and recruitment rates of deciduous species only exhibited significant positive correlations with parameter a, which describes the steepness of VCs and indicates the sensitivity of conductivity loss with water potential decline, but is often neglected. These differences among evergreen and deciduous species may contribute to the poor performance of existing quantitative relationships (such as the fitting relationships for all 16 species) in capturing tree mortality and recruitment dynamics. Additionally, evergreen species presented a significant positive relationship between relative growth rate (RGR) and Ks,max, while deciduous species did not display such relationship. The RGR of both evergreen and deciduous species also displayed no significant correlations with P50 and a. Further analysis demonstrated that species with steeper VCs tended to have high mortality and recruitment rates, while species with flatter VCs were usually those with low mortality and recruitment rates. Our results highlight the important role of parameter a in tree demography, especially for deciduous species. Given that VC is a key component of plant hydraulic models, integrating measured VC rather than optimizing its parameters will help improve the ability to simulate and predict forest response to water availability.


Assuntos
Modelos Biológicos , Caules de Planta , Árvores , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Florestas , Água/fisiologia , Água/metabolismo , Panamá
20.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063077

RESUMO

Rice straw is an agricultural waste, the disposal of which through open burning is an emerging challenge for ecology. Green manufacturing using straw returning provides a more avant-garde technique that is not only an effective management measure to improve soil fertility in agricultural ecosystems but also nurtures environmental stewardship by reducing waste and the carbon footprint. However, fresh straw that is returned to the field cannot be quickly decomposed, and screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. This study aimed to reveal the potential mechanism of influence exerted by exogenous degradative bacteria (ZJW-6) on the degradation of straw, growth of plants, and soil bacterial community during the process of returning rice straw to the soil. The inoculation with ZJW-6 enhanced the driving force of cellulose degradation. The acceleration of the rate of decomposition of straw releases nutrients that are easily absorbed by rice (Oryza sativa L.), providing favorable conditions for its growth and promoting its growth and development; prolongs the photosynthetic functioning period of leaves; and lays the material foundation for high yields of rice. ZJW-6 not only directly participates in cellulose degradation as degrading bacteria but also induces positive interactions between bacteria and fungi and enriches the microbial taxa that were related to straw degradation, enhancing the rate of rice straw degradation. Taken together, ZJW-6 has important biological potential and should be further studied, which will provide new insights and strategies for the appropriate treatment of rice straw. In the future, this degrading bacteria may provide a better opportunity to manage straw in an ecofriendly manner.


Assuntos
Bactérias , Oryza , Microbiologia do Solo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Caules de Planta/microbiologia , Caules de Planta/metabolismo , Celulose/metabolismo , Biodegradação Ambiental , Agricultura/métodos , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA