Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.081
Filtrar
1.
Food Res Int ; 183: 114180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760124

RESUMO

Platostoma palustre (Mesona chinensis Benth or Hsian-tsao, also known as "Xiancao" in China), is an edible and medicinal plant native to India, Myanmar, and Indo-China. It is the main ingredient in the popular desserts Hsian-tsao tea, herbal jelly, and sweet herbal jelly soup. P. palustre is found abundantly in nutrient-rich substances and possesses unique aroma compounds. Variations in the contents of volatile compounds among different germplasms significantly affect the quality and flavor of P. palustre, causing contradiction in demand. This study investigates the variation in the volatile compound profiles of distinct ploidy germplasms of P. palustre by utilising headspace gas chromatography-mass spectrometry (HS-GC-MS) and an electronic nose (e-nose). The results showed significant differences in the aroma characteristics of stem and leaf samples in diverse P. palustre germplasms. A total of sixty-seven volatile compounds have been identified and divided into ten classes. Six volatile compounds (caryophyllene, α-bisabolol, benzaldehyde, ß-selinene, ß-elemene and acetic acid) were screened as potential marker volatile compounds to discriminate stems and leaves of P. palustre. In this study, leaves of P. palustre showed one odor pattern and stems showed two odor patterns under the influence of α-bisabolol, acetic acid, and butyrolactone. In addition, a correlation analysis was conducted on the main volatile compounds identified by HS-GC-MS and e-nose. This analysis provided additional insight into the variations among samples resulting from diverse germplasms. The present study provides a valuable volatilome, and flavor, and quality evaluation for P. palustre, as well as new insights and scientific basis for the development and use of P. palustre germplasm resources.


Assuntos
Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Folhas de Planta/química , Paladar , Caules de Planta/química
2.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731544

RESUMO

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Assuntos
Antioxidantes , Berberis , Casca de Planta , Extratos Vegetais , Berberis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Casca de Planta/química , Humanos , Linhagem Celular Tumoral , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Sobrevivência Celular/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/química , Cromatografia Líquida de Alta Pressão , Caules de Planta/química
3.
Nat Prod Res ; 38(11): 1864-1873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739563

RESUMO

Phytochemical studies of the stems and leaves of Stephania dielsiana Y.C.Wu yielded two new aporphine alkaloids (1 and 5), along with six known alkaloids (2-4 and 6-8). Their structures were characterised based on analyses of spectroscopic data, including one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS). The cytotoxic activities of the isolated compounds against a small panel of tumour cell lines were assessed by MTS assay. Interestingly, compound 2 exhibited particularly strong cytotoxic activities against HepG2, MCF7 and OVCAR8 cancer cell lines, with IC50 values of 3.20 ± 0.18, 3.10 ± 0.06 and 3.40 ± 0.007 µM, respectively. Furthermore, molecular docking simulations were carried out to explore the interactions and binding mechanisms of the most active compound (compound 2) with proteins. Our results contribute to understanding the secondary metabolites produced by S. dielsiana and provide a scientific rationale for further investigations of cytotoxicity of this valuable medicinal plant.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Aporfinas , Simulação de Acoplamento Molecular , Folhas de Planta , Caules de Planta , Stephania , Aporfinas/química , Aporfinas/farmacologia , Humanos , Folhas de Planta/química , Caules de Planta/química , Alcaloides/química , Alcaloides/farmacologia , Stephania/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Estrutura Molecular , Linhagem Celular Tumoral , Células Hep G2 , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância Magnética , Plantas Medicinais/química
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 587-596, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646745

RESUMO

To investigate the longitudinal variation patterns of sapwood, heartwood, bark and stem moisture content along the trunk of artificial Larix olgensis, we constructed mixed effect models of moisture content based on beta regression by combining the effects of sampling plot and sample trees. We used two sampling schemes to calibrate the model, without limiting the relative height (Scheme Ⅰ) and with a limiting height of less than 2 m (Scheme II). The results showed that sapwood and stem moisture content increased gradually along the trunk, heartwood moisture content decreased slightly and then increased along the trunk, and bark moisture content increased along the trunk and then levelled off before increasing. Relative height, height to crown base, stand area at breast height per hectare, age, and stand dominant height were main factors driving moisture content of L. olgensis. Scheme Ⅰ showed the stable prediction accuracy when randomly sampling moisture content measurements from 2-3 discs to calibrate the model, with the mean absolute percentage error (MAPE) of up to 7.2% for stem moisture content (randomly selected 2 discs), and the MAPE of up to 7.4%, 10.5% and 10.5% for sapwood, heartwood and bark moisture content (randomly selected 3 discs), respectively. Scheme Ⅱ was appropriate when sampling moisture content measurements from discs of 1.3 and 2 m height and the MAPE of sapwood, heartwood, bark and stem moisture content reached 7.8%, 11.0%, 10.4% and 7.1%, respectively. The prediction accuracies of all mixed effect beta regression models were better than the base model. The two-level mixed effect beta regression models, considering both plot effect and tree effect, would be suitable for predicting moisture content of each part of L. olgensis well.


Assuntos
Larix , Caules de Planta , Água , Larix/crescimento & desenvolvimento , Larix/química , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Água/análise , Água/química , Análise de Regressão , Madeira/química , Modelos Teóricos , Previsões
5.
Nutrients ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674831

RESUMO

An approach that shows promise for quickening the evolution of innovative anticancer drugs is the assessment of natural biomass sources. Our study sought to assess the effect of W. somnifera L. (WS) methanolic root and stem extracts on the expression of five targeted genes (cyclooxygenase-2, caspase-9, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2) in colon cancer cell lines (Caco-2 cell lines). Plant extracts were prepared for bioassay by dissolving them in dimethyl sulfoxide. Caco-2 cell lines were exposed to various concentrations of plant extracts, followed by RNA extraction for analysis. By explicitly relating phytoconstituents of WS to the dose-dependent overexpression of caspase-9 genes and the inhibition of cyclooxygenase-2, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2 genes, our novel findings characterize WS as a promising natural inhibitor of colorectal cancer (CRC) growth. Nonetheless, we recommend additional in vitro research to verify the current findings. With significant clinical benefits hypothesized, we offer WS methanolic root and stem extracts as potential organic antagonists for colorectal carcinogenesis and suggest further in vivo and clinical investigations, following successful in vitro trials. We recommend more investigation into the specific phytoconstituents in WS that contribute to the regulatory mechanisms that inhibit the growth of colon cancer cells.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Withania , Humanos , Extratos Vegetais/farmacologia , Células CACO-2 , Withania/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Metanol/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Caspase 9/metabolismo , Caspase 9/genética , Antineoplásicos Fitogênicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Raízes de Plantas/química , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Caules de Planta/química
6.
Food Chem ; 449: 139173, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593722

RESUMO

Most teas, including white tea, are produced from tender shoots containing both leaf and stem. However, the effect of the stem on white tea quality remains unclear, especially during withering, an essential process. Therefore, this study investigated the withering-induced changes in the leaves and stems of Camellia sinensis cv. 'Fudingdabai' by multi-group analysis. During withering, the levels of catechin and theobromine (i.e., major flavor-related compounds) decreased slightly, mainly in the leaves. The abundance of some proteinaceous amino acids related to fresh taste increased in stems due to increased protein hydrolysis. In addition, changes in biosynthetic pathways caused a decrease in theanine (a major non-proteinaceous amino acid) and an increase in gamma-aminobutyric acid in stems. Terpenes, mainly in the stems, were partially affected by withering. Phenylacetaldehyde, a major contributor to white tea aroma, increased mainly in the stems. These findings reflect the positive contribution of the stem to white tea quality.


Assuntos
Camellia sinensis , Folhas de Planta , Caules de Planta , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Chá/química , Chá/metabolismo , Catequina/análise , Catequina/metabolismo , Paladar
7.
Physiol Plant ; 176(3): e14292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685817

RESUMO

Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.


Assuntos
Congelamento , Isótopos de Oxigênio , Árvores , Água , Xilema , Isótopos de Oxigênio/análise , Água/metabolismo , Árvores/metabolismo , Xilema/metabolismo , Xilema/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Marcação por Isótopo/métodos , Caules de Planta/química , Caules de Planta/metabolismo
8.
Pak J Biol Sci ; 27(3): 119-124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686733

RESUMO

<b>Background and Objective:</b> A new strain of cannabis, <i>Cannabis sativa</i> L. Tanao Si Kan Dang RD1, has been approved and registered by the Rajamangala University of Technology Isan, Thailand. The <i>C. sativa</i> is acknowledged for its medicinal properties which demonstrated various therapeutic properties, such as anti-cancer and antibacterial activities. This study aimed to investigate the antibacterial activity of ethanolic extracts from the stems and leaves of the Tanao Si Kan Dang RD1 strain against seven antibiotic-resistant bacteria. <b>Materials and Methods:</b> The primary antibacterial activity of ethanolic Tanao Si Kan Dang RD1 extracts were determined using the disc diffusion method, while the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using the broth microdilution method. <b>Results:</b> The largest inhibition zone, measuring 12 mm, was observed in leaf extracts against <i>Pseudomonas aeruginosa</i> 101. The lowest MIC, at 0.78 mg/mL, was obtained from stem extracts against <i>Stenotrophomonas maltophilia</i>. The lowest MBCs, at 12.5 mg/mL, were observed in leaf extracts against <i>Enterococcus faecalis</i>, <i>Acinetobacter baumannii</i>, multidrug-resistant <i>Klebsiella</i> <i>pneumoniae</i>, <i>Stenotrophomonas maltophilia</i> and <i>Pseudomonas aeruginosa</i> 101 and stem extracts against <i>Acinetobacter baumannii</i>, multidrug-resistant <i>Klebsiella pneumoniae</i>, <i>Stenotrophomonas maltophilia</i> and <i>Pseudomonas aeruginosa</i> 101. <b>Conclusion:</b> This study presents a novel finding regarding the antibacterial activity of ethanolic extracts from the leaves and stems of Tanao Si Kan Dang RD1 against antibiotic-resistant bacteria. The potential application of these cannabis plant extracts in the development of antibiotics capable of combating antibiotic-resistant pathogenic bacteria represents a promising strategy to address a significant global health concern.


Assuntos
Antibacterianos , Cannabis , Testes de Sensibilidade Microbiana , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Cannabis/química , Humanos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Folhas de Planta/química , Etanol/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Caules de Planta/química
9.
J Agric Food Chem ; 72(17): 9923-9936, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629800

RESUMO

Lignin provides structural support to plants; however, it reduces their utilization rate. According to our previous studies, selenium (Se) reduces lignin accumulation in alfalfa, but the specific mechanism involved remains unclear. Therefore, at the seedling stage, four root irrigation treatments using 2.5, 50, and 5 µmol/L sodium selenite (S-RI), selenomethionine (SS-RI), Se nanoparticles (SSS-RI), and deionized water (CK-RI) were performed. At the branching stage, four treatments of foliar spraying with the three Se fertilizers described above at a concentration of 0.5 mmol/L (S-FS, SS-FS, and SSS-FS) and deionized water (CK-FS) were administered. The results revealed that all Se treatments chiefly reduced the level of deposition of syringyl (S) lignin in the first internode of alfalfa stems. SS-FS and SSS-FS treatments mainly reduced the deposition of S and guaiacyl (G) lignins in the sixth internode of alfalfa stems, respectively, while S-FS treatment only slightly reduced the deposition of G lignin. S, SS, and SSS-RI treatments reduced the level of deposition of S and G lignins in the sixth internode of alfalfa stems. Se application increased plant height, stem diameter, epidermis (cortex) thickness, primary xylem vessel number (diameter), and pith diameter of alfalfa but decreased primary xylem area and pith parenchyma cell wall thickness of the first internode, and SS(SSS)-FS treatment reduced the mechanical strength of alfalfa stems. Therefore, Se application could decrease lignin accumulation by regulating the organizational structure parameters of alfalfa stems and the deposition pattern of the lignin monomers.


Assuntos
Lignina , Medicago sativa , Caules de Planta , Selênio , Medicago sativa/química , Medicago sativa/metabolismo , Medicago sativa/efeitos dos fármacos , Lignina/química , Lignina/metabolismo , Caules de Planta/química , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Selênio/farmacologia , Selênio/química , Selênio/metabolismo , Fertilizantes/análise , Plântula/química , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
10.
Phytochemistry ; 222: 114077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615925

RESUMO

Two undescribed bisindole alkaloids, gelseginedine A (1) and its rearranged gelseginedine B (2), and seven unreported gelselegine-type oxindole alkaloids (3-9) were isolated from the stems and leaves of Gelsemium elegans, together with five known alkaloids (10-14). Compounds 1 and 2 represented the first examples of gelselegine-gelsedine type alkaloids which bridged two units by a double bond. Their structures with absolute configurations were elucidated by means of HRESIMS, NMR and calculational chemistry. The performed bioassay revealed that 14 could promote the proliferation of human oral mucosa fibroblast cells.


Assuntos
Fibroblastos , Gelsemium , Indóis , Extratos Vegetais , Indóis/isolamento & purificação , Indóis/farmacologia , Gelsemium/química , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Estrutura Molecular , Caules de Planta/química , Humanos
11.
Int J Biol Macromol ; 266(Pt 1): 131086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521302

RESUMO

This study investigates a protocol for extracting and characterizing fibers obtained from cauliflower (Brassica oleracea var. botrytis L.) stem agricultural waste, exploring its suitability for composite applications. Brassica oleracea var. botrytis L. (BOVBL), commonly known as cauliflower, was comprehensively characterized for the first time, with its fiber extracted from plant waste stems. BOVBL fiber, subjected to microbial degradation, exhibited properties typical of natural fibers, with a density of 1.47 g/cm3 and a composition of 50.09 % cellulose, 19.7 % hemicellulose, and 22.3 % lignin. XPS analysis showed that the surface structure of the fiber consisted of carbon (64.37 %) and oxygen (22.36 %) due to cellulose. The crystalline index is calculated as 57.32 % indicating a highly organized molecular arrangement. SEM images depicted a rough surface with hexagonal and rectangular forms, enhancing resin penetration for improved composite adhesion. The thermal analysis demonstrated stability up to 324.38 °C, promising suitability for composite heat processing. The results of the single fiber test (tensile strength, E-modulus, and elongation at break) were assessed by using Weibull distribution analysis. This investigation provides suggestions for the potential applications of organic waste leftovers as a new, environmentally friendly material for fiber-reinforced polymer composites aligning with circular economy and sustainability through the utilization of agricultural waste in the future.


Assuntos
Brassica , Celulose , Caules de Planta , Brassica/química , Celulose/química , Caules de Planta/química , Lignina/química , Resíduos , Resistência à Tração
12.
J Nat Med ; 78(3): 558-567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517622

RESUMO

A total of five new mexicanolides (1-5), namely alliaxylines A-E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.


Assuntos
Limoninas , Meliaceae , Casca de Planta , Humanos , Meliaceae/química , Casca de Planta/química , Limoninas/química , Limoninas/farmacologia , Limoninas/isolamento & purificação , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células MCF-7 , Células A549 , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Caules de Planta/química
13.
Chem Biodivers ; 21(5): e202400380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498616

RESUMO

The chemical investigation of the stems of Knema globularia led to the isolation of two new benzoquinones derivatives, embenones A and B (1 and 2), along with three known compounds (3-5). The structures of the isolated compounds were determined using spectroscopic techniques, including HRESIMS, 1D and 2D NMR, in conjunction with comparison to existing literature data. Compounds 1 and 2 represent new carbon skeletons in nature. Furthermore, all isolated compounds were evaluated for their α-glucosidase inhibitory activity, with compounds 1-3 exhibiting superior potency relative to the positive control (acarbose, IC50 331 µM). Their IC50 values ranged from 1.40 to 96.1 µM.


Assuntos
Benzoquinonas , Inibidores de Glicosídeo Hidrolases , Caules de Planta , alfa-Glucosidases , Benzoquinonas/química , Benzoquinonas/isolamento & purificação , Benzoquinonas/farmacologia , Caules de Planta/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , alfa-Glucosidases/metabolismo , Vietnã , Relação Estrutura-Atividade , Estrutura Molecular , Conformação Molecular , População do Sudeste Asiático
14.
Phytochemistry ; 222: 114060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522560

RESUMO

Natural rubber produced in stems of the guayule plant (Parthenium argentatum) is susceptible to post-harvest degradation from microbial or thermo-oxidative processes, especially once stems are chipped. As a result, the time from harvest to extraction must be minimized to recover high quality rubber, especially in warm summer months. Tocopherols are natural antioxidants produced in plants through the shikimate and methyl-erythtiol-4-phosphate (MEP) pathways. We hypothesized that increased in vivo guayule tocopherol content might protect rubber from post-harvest degradation, and/or allow reduced use of chemical antioxidants during the extraction process. With the objective of enhancing tocopherol content in guayule, we overexpressed four Arabidopsis thaliana tocopherol pathway genes in AZ-2 guayule via Agrobacterium-mediated transformation. Tocopherol content was increased in leaf and stem tissues of most transgenic lines, and some improvement in thermo-oxidative stability was observed. Overexpression of the four tocopherol biosynthesis enzymes, however, altered other isoprenoid pathways resulting in reduced rubber, resin and argentatins content in guayule stems. The latter molecules are mainly synthesized from precursors derived from the mevalonate (MVA) pathway. Our results suggest the existence of crosstalk between the MEP and MVA pathways in guayule and the possibility that carbon metabolism through the MEP pathway impacts rubber biosynthesis.


Assuntos
Asteraceae , Folhas de Planta , Caules de Planta , Tocoferóis , Tocoferóis/metabolismo , Tocoferóis/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Caules de Planta/metabolismo , Caules de Planta/química , Caules de Planta/genética , Asteraceae/metabolismo , Asteraceae/química , Asteraceae/genética , Borracha/metabolismo , Borracha/química , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/química , Resinas Vegetais/metabolismo , Resinas Vegetais/química
15.
Int J Biometeorol ; 68(6): 1155-1167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499792

RESUMO

It can provide a basis for decision making for the conservation and sustainable use of forest ecosystems in mountains to understand the stoichiometric properties and nutrient allocation strategies of major tree species. However, the plant nutrient allocation strategies under different environmental gradients in forest systems of arid and semi-arid mountains are not fully understand. Therefore, three typical regions in the Qilian Mountains on the eastern edge of the Qinghai-Tibet Plateau were selected based on precipitation and temperature gradients, and the stoichiometric characteristics and nutrient allocation strategies of Qinghai spruce (Picea crassifolia) of the dominant tree species under different environmental gradients were investigated. The results showed that (1) the stoichiometric characteristics of plant tissues were different in the three regions. (2) The importance of each tissue in the plant nutrient allocation varied in different regions, showing that the plant roots are more important in the warm-wet region, while the plant leaves, branches and trunks are more important in the transition and hot-dry regions. (3) The influencing factors affecting plant nutrient allocation strategies were inconsistent across regions, which showed that plant nutrient allocation strategies in the warm-wet and transition region were mainly influenced by soil factors, while they were more influenced by climatic factors in the hot-dry region. The patterns of plant nutrient allocation strategies and drivers under different environmental gradients could help us better understand the ecological adaptation mechanism and physiological adjustment mechanism of forest ecosystem in mountains.


Assuntos
Picea , Picea/metabolismo , Tibet , Folhas de Planta/metabolismo , Folhas de Planta/química , Temperatura , Raízes de Plantas/metabolismo , Solo/química , China , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Chuva , Clima , Caules de Planta/metabolismo , Caules de Planta/química
16.
J Asian Nat Prod Res ; 26(6): 747-755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379373

RESUMO

An unprescribed nortriterpenoid with an aromatic E ring, uncanortriterpenoid A (1), together with fourteen known triterpenoids (2-15), were isolated from the hook-bearing stems of Uncaria rhynchophylla Miq. Based on extensive spectroscopic analyses, the NMR data of 2, 5, and 10 in CD3OD were assigned for the first time, and the wrongly assigned δC of C-27 and C-29 of 2 were revised. Among the known compounds, 7, 13, and 15 were isolated from this species for the first time, and 15 represents the first lanostane triterpenoid bearing an extra methylidene at C-24 for the Rubiaceae family. Additionally, compounds 6 and 14 exhibited moderate ferroptosis inhibitory activity, with an EC50 value of 14.74 ± 0.20 µM for 6 and 23.11 ± 1.31 µM for 14.


Assuntos
Caules de Planta , Triterpenos , Uncaria , Uncaria/química , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Caules de Planta/química , Estrutura Molecular , Humanos
17.
Microb Physiol ; 34(1): 78-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38286118

RESUMO

INTRODUCTION: The current study investigated the antioxidant and anti-inflammatory effects of ethanol extracts from Lindera glauca twig (LGT) and leaf/stem (LGLS). METHODS: The antioxidant activities were measured by total content of polyphenol and flavonoid, DPPH radical scavenging, and ABTS+ radical scavenging activity. To evaluate the anti-inflammatory effect in the LPS-induced RAW 264.7 cells, protein and mRNA expression of major inflammatory factors were analyzed using Western blot analysis and RT-PCR. RESULTS: The total polyphenol content of LGT and LGLS was 88.45 ± 11.74 and 115.75 ± 7.87 GA mg/g, respectively. The total flavonoid content was 66 ± 2.89 and 74.33 ± 2.89 QE mg/g. Both LGT and LGLS showed high DPPH and ABTS+ radical scavenging activities. Neither LGT nor LGLS was cytotoxic to RAW 264.7 cells. The anti-inflammatory activities were measured by LPS-induced RAW 264.7 cells. LGT and LGLS showed inhibition of the LPS-induced production of nitric oxide (NO), inducible NO synthase, cyclooxygenase-2 at the protein and mRNA levels, as determined by Western blotting and RT-PCR, respectively. In addition, the release of tumor necrosis factor-α and interleukin-6 mRNA expression levels of these cytokines was reduced by LGT and LGLS. CONCLUSION: These results suggest that LGT and LGLS extracts have potential for use as a functional antioxidant and anti-inflammatory ingredient in cosmetic industry.


Assuntos
Anti-Inflamatórios , Antioxidantes , Lindera , Extratos Vegetais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lindera/química , Antioxidantes/farmacologia , Folhas de Planta/química , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Flavonoides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Polifenóis/farmacologia , Polifenóis/química , Linhagem Celular , Caules de Planta/química , Sobrevivência Celular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
18.
Int J Biol Macromol ; 246: 125530, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355061

RESUMO

In this study, hemicellulose was isolated from the apical, middle and basal segments of C. lanceolata stem to investigate the dynamic change of its structure during xylogenesis. Results showed that the C. lanceolata hemicellulose is mainly consisted of O-acetylgalactoglucomannan (GGM) which backbone is alternately linked by ß-d-mannopyranosyl (Manp) and ß-d-glucopyranosyl (Glcp) via (1 â†’ 4)-glycosidic bond, while the side chains are α-d-galactopyranosyl (Galp) and acetyl. In addition, 4-O-methylglucuronoarabinoxylan (GAX) is another dominant structure of C. lanceolata hemicellulose which contains a linear backbone of (1 â†’ 4)-ß-d-xylopyranosyl (Xylp) and side chains of 4-O-Me-α-d-glucuronic acid (MeGlcpA) and α-L-arabinofuranose (Araf). The thickness of the cell wall, the ratio of GGM/GAX and the molecular weight of hemicellulose were increased as the extension of growth time. The degree of glycosyl substitutions of xylan and mannan was decreased from 10.34 % (apical) to 8.38 % (basal) and from 15.63 % (apical) to 10.49 % (basal), respectively. However, the total degree of acetylation was enhanced from 0.28 (apical) to 0.37 (basal). Transcriptome analysis showed that genes (CSLA9, IRX9H1, IRX10L, IRX15L, GMGT1, TBL19, TBL25, GUX2, GUX3, GXM1, F8H1 and F8H2) related to hemicellulose biosynthesis are mainly expressed in mature part. This study is of great significance for genetic breeding and high-value utilization of C. lanceolata.


Assuntos
Cunninghamia , Cunninghamia/química , Cunninghamia/crescimento & desenvolvimento , Feixe Vascular de Plantas/química , Feixe Vascular de Plantas/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Polissacarídeos/análise
19.
Sci Rep ; 13(1): 5640, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024542

RESUMO

Biomaterials are increasingly being designed and adapted to a wide range of structural applications, owing to their superior mechanical property-to-weight ratios, low cost, biodegradability, and CO2 capture. Bamboo, specifically, has an interesting anatomy with long tube-like vessels present in its microstructure, which can be exploited to improve its mechanical properties for structural applications. By filling these vessels with a resin, e.g. an applied external loading would be better distributed in the structure. One recent method of impregnating the bamboo is plastination, which was originally developed for preserving human remains. However, the original plastination process was found to be slow for bamboo impregnation application, while being also rather complicated/methodical for industrial adaptation. Accordingly, in this study, an improved plastination method was developed that is 40% faster and simpler than the original method. It also resulted in a 400% increase in open-vessel impregnation, as revealed by Micro-X-ray Computed Tomography imaging. The improved method involves three steps: acetone dehydration at room temperature, forced polymer impregnation with a single pressure drop to - 23 inHg, and polymer curing at 130 °C for 20 min. Bamboo plastinated using the new method was 60% stronger flexurally, while maintaining the same modulus of elasticity, as compared to the virgin bamboo. Most critically, it also maintained its biodegradability from cellulolytic enzymes after plastination, as measured by a respirometric technique. Fourier transform infrared-attenuated total reflection, and thermogravimetric analyses were conducted and showed that the plastinated bamboo's functional groups were not altered significantly during the process, possibly explaining the biodegradability. Finally, using cone calorimetry, plastinated bamboo showed a faster ignition time, due to the addition of silicone, but a lower carbon monoxide yield. These results are deemed as a promising step forward for further improvement and application of this highly abundant natural fiber in engineering structures.


Assuntos
Plásticos Biodegradáveis , Caules de Planta , Plastinação , Sasa , Plásticos Biodegradáveis/química , Sasa/química , Caules de Planta/química , Plastinação/métodos
20.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902256

RESUMO

Wild soybean, also known as Glycine soja Sieb. et Zucc. (GS), has long been known for its various health benefits. Although various pharmacological effects of G. soja have been studied, the effects of GS leaf and stem (GSLS) on osteoarthritis (OA) have not been evaluated. Here, we examined the anti-inflammatory effects of GSLS in interleukin-1ß (IL-1ß)-stimulated SW1353 human chondrocytes. GSLS inhibited the expression of inflammatory cytokines and matrix metalloproteinases and ameliorated the degradation of collagen type II in IL-1ß-stimulated chondrocytes. Furthermore, GSLS played a protective role in chondrocytes by inhibiting the activation of NF-κB. In addition, our in vivo study demonstrated that GSLS ameliorated pain and reversed cartilage degeneration in joints by inhibiting inflammatory responses in a monosodium iodoacetate (MIA)-induced OA rat model. GSLS remarkably reduced the MIA-induced OA symptoms, such as joint pain, and decreased the serum levels of proinflammatory mediators, cytokines, and matrix metalloproteinases (MMPs). Our findings show that GSLS exerts anti-osteoarthritic effects and reduces pain and cartilage degeneration by downregulating inflammation, suggesting that it is a useful therapeutic candidate for OA.


Assuntos
Condrócitos , Glycine max , Osteoartrite , Extratos Vegetais , Folhas de Planta , Caules de Planta , Animais , Humanos , Ratos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinases da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/terapia , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glycine max/química , Folhas de Planta/química , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...