Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 105(10): 1672-1687, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30368798

RESUMO

PREMISE OF THE STUDY: Studies across diverse species have established theory for the contribution of leaf traits to plant drought tolerance. For example, species in more arid climates tend to have smaller leaves of higher vein density, higher leaf mass per area, and more negative osmotic potential at turgor loss point (πTLP ). However, few studies have tested these associations for species within a given lineage that have diversified across an aridity gradient. METHODS: We analyzed the anatomy and physiology of 10 Ceanothus (Rhamnaceae) species grown in a common garden for variation between and within "wet" and "dry" subgenera (Ceanothus and Cerastes, respectively) and analyzed a database for 35 species for leaf size and leaf mass per area (LMA). We used a phylogenetic generalized least squares approach to test hypothesized relationships among traits, and of traits with climatic aridity in the native range. We also tested for allometric relationships among anatomical traits. KEY RESULTS: Leaf form, anatomy, and drought tolerance varied strongly among species within and between subgenera. Cerastes species had specialized anatomy including hypodermis and encrypted stomata that may confer superior water storage and retention. The osmotic potentials at turgor loss point (πTLP ) and full turgor (πo ) showed evolutionary correlations with the aridity index (AI) and precipitation of the 10 species' native distributions, and LMA with potential evapotranspiration for the 35 species in the larger database. We found an allometric correlation between upper and lower epidermal cell wall thicknesses, but other anatomical traits diversified independently. CONCLUSIONS: Leaf traits and drought tolerance evolved within and across lineages of Ceanothus consistently with climatic distributions. The πTLP has signal to indicate the evolution of drought tolerance within small clades.


Assuntos
Evolução Biológica , Ceanothus/fisiologia , Secas , Folhas de Planta/fisiologia , Adaptação Fisiológica , California , Ceanothus/anatomia & histologia , Folhas de Planta/anatomia & histologia
2.
Oecologia ; 175(3): 801-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817157

RESUMO

Defoliation by herbivores can reduce carbon assimilation, change plant water relations, and even shift the biotic structure of plant communities. In this study, we took advantage of a long-term deer exclosure experiment to examine the consequences of persistent deer herbivory on plant water relations and the xylem structure-function relationships in Ceanothus rigidus, a maritime chaparral shrub in coastal California. Browsed plants had thicker stems with many intertwined short distal twigs, and significantly higher sapwood-to-leaf area ratios than their non-browsed counterparts. Leaf area-specific hydraulic conductivity was similar in both browsed and non-browsed plants, but xylem area-specific conductivity was significantly lower in the browsed plants. Vessel diameters were equivalent in both plant groups, but the number of vessels on a transverse area basis was nearly 40% lower in the browsed plants, accounting for their lower transport efficiency. Mid-day in situ water potentials and losses of hydraulic conductivity due to embolism were similar in both groups of plants but stomatal conductance was higher in the browsed shrubs in the early part of the growing season. We discuss our findings in the context of whole-plant ecophysiology, and explore the consequences of herbivory on hormonal signals, wood anatomy, and xylem function.


Assuntos
Ceanothus/fisiologia , Herbivoria , Animais , California , Cervos , Fotossíntese , Folhas de Planta/metabolismo , Estações do Ano , Água/metabolismo , Madeira , Xilema/anatomia & histologia , Xilema/metabolismo
3.
Ecology ; 92(5): 1020-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21661563

RESUMO

Separate effects of abiotic and biotic factors on the structure and dynamics of ecological communities may be recorded in growth rings of woody plants. We used Ceanothus cuneatus rigidus and Arctostaphylos pumila to tease apart the roles of fire, rain, and herbivores on the histories and community structure of four areas in a coastal mediterranean-type climate in central California with mild winters and mild summers. Ring widths of both species were related to rainfall in two of the areas; heavy deer browsing on Ceanothus overwhelmed the climate signal in the others. Ceanothus germination was more closely related to heavy rainfall, especially during ENSO years, than to fire events. In a related greenhouse experiment that evaluated these observations, the same proportions of new Ceanothus seeds germinated after burning and after receiving regular water for several months, but germination of old seeds responded primarily to the fire treatment. In areas where heavy browsing by mammals reduces recruitment and growth of Ceanothus and increases mortality, the continuance of the Ceanothus population must rely heavily on germination from the persistent seed bank during unusually wet years or after occasional fires. Because Arctostaphylos can produce new stems from underground roots, individual plants may survive and produce seeds until another fire.


Assuntos
Arctostaphylos/fisiologia , Ceanothus/fisiologia , Clima , Incêndios , Animais , California , Ecossistema , Chuva , Sementes/fisiologia , Fatores de Tempo , Madeira
4.
Ecology ; 91(4): 1114-23, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20462125

RESUMO

Habitat loss is widely considered the greatest threat to biodiversity. However, habitat loss brings with it myriad other threats that exacerbate impacts to biodiversity. For instance, altered fire regime is associated with habitat loss and fragmentation with unknown consequences to biodiversity. Plant functional groups that rely on fire to complete their life cycle may be adversely affected by disruptions to the natural fire regime, particularly when coupled with population declines due to habitat loss. We used a spatially explicit stochastic population model linked with fire hazard functions to investigate the cumulative effects of habitat loss, fragmentation, and altered fire regime on the expected minimum abundance of a long-lived obligate-seeding shrub, Ceanothus greggii var. perplexans. This species is endemic to the California Floristic Province, a biodiversity hotspot, and is representative of a functional group of plants found in many fire-prone ecosystems. We tested the impact of a range of different fire frequencies under three different combinations of fuel accumulation and weather. The best average fire return interval for population abundance was consistently in the range of 30-50 years. However, observed average fire return intervals in highly fragmented areas can be approximately 20 years or less, and model results show this to be detrimental to C. greggii populations. Results also show that if fires are uncorrelated across habitat fragments then the impact of altered fire regime on populations is worse than the impact of habitat fragmentation because of spatial and temporal decoupling of fire events across the landscape. However, the negative impacts of altered fire regime are outweighed by habitat loss as fragmentation increases. Our results show that large unplanned fires, operating under an altered fire regime, are ultimately detrimental to perennial obligate-seeding shrubs in fragmented landscapes.


Assuntos
Ceanothus/fisiologia , Ecossistema , Incêndios , Sementes , California , Demografia , Reprodução , Fatores de Tempo
5.
Ecology ; 89(9): 2446-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18831166

RESUMO

Conventional explanations for deciduousness do not include losses to herbivory. However, a recent explanation posits that deciduous leaf drop allows trees to reduce their herbivore loads and that this benefit of the deciduous habit may partly offset lost opportunities for photosynthesis. Much of the damage caused by chewing herbivores occurs early in the season when adult insects colonize as new leaves are expanding; trees without leaves from previous leaf flushes at this time are less attractive and suffer less cost of herbivory. I tested this hypothesis using Ceanothus velutinus, an evergreen shrub that shows considerable individual variation in leaf retention. Stems that held more leaves through winter experienced more chewing damage the following season. Stems with leaves experimentally removed through winter also were less likely to receive chewing damage the following season. At least some herbivores in this system make oviposition decisions before new leaves have expanded, and old leaves may provide cues about the suitability of the stem. Holding leaves through winter increased the likelihood of herbivory, and experimental protection from herbivores caused 60% greater inflorescence production compared to unprotected stems. However, the cost of leaf retention was more than offset by an overall benefit. Stems that were allowed to keep winter leaves produced larger new leaves in summer and expanded them more rapidly in the season than stems with winter leaves experimentally removed. As a result, stems with leaves through winter experienced higher survival, four times as many inflorescences, and 40 times as many fruits as shoots that were experimentally defoliated. Losses to herbivores may be an unappreciated cost of leaf retention, and cost-benefit models of deciduous and evergreen behavior should include these losses.


Assuntos
Ceanothus/fisiologia , Comportamento Alimentar/fisiologia , Invertebrados/fisiologia , Folhas de Planta/fisiologia , Animais , Estações do Ano , Fatores de Tempo
6.
Tree Physiol ; 27(4): 597-610, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242001

RESUMO

At the leaf scale, it is a long-held assumption that stomata close at night in the absence of light, causing transpiration to decrease to zero. Energy balance models and evapotranspiration equations often rely on net radiation as an upper bound, and some models reduce evapotranspiration to zero at night when there is no solar radiation. Emerging research is showing, however, that transpiration can occur throughout the night in a variety of vegetation types and biomes. At the ecosystem scale, eddy covariance measurements have provided extensive data on latent heat flux for a multitude of ecosystem types globally. Nighttime eddy covariance measurements, however, are generally unreliable because of low turbulence. If significant nighttime water loss occurs, eddy flux towers may be missing key information on latent heat flux. We installed and measured rates of sap flow by the heat ratio method (Burgess et al. 2001) at two AmeriFlux (part of FLUXNET) sites in California. The heat ratio method allows measurement and quantification of low rates of sap flow, including negative rates (i.e., hydraulic lift). We measured sap flow in five Pinus ponderosa Dougl. ex Laws. trees and three Arctostaphylos manzanita Parry and two Ceanothus cordulatus A. Kellog shrubs in the Sierra Nevada Mountains, and in five Quercus douglasii Hook and Arn. trees at an oak savanna in the Central Valley of California. Nocturnal sap flow was observed in all species, and significant nighttime water loss was observed in both species of trees. Vapor pressure deficit and air temperature were both well correlated with nighttime transpiration; the influence of wind speed on nighttime transpiration was insignificant at both sites. We distinguished between storage-tissue refilling and water loss based on data from Year 2005, and calculated the percentage by which nighttime transpiration was underestimated by eddy covariance measurements at both sites.


Assuntos
Árvores/fisiologia , Arctostaphylos/fisiologia , California , Ceanothus/fisiologia , Ritmo Circadiano , Clima , Escuridão , Ecossistema , Modelos Biológicos , Pinus ponderosa/fisiologia , Transpiração Vegetal/fisiologia , Quercus/fisiologia
7.
Oecologia ; 150(1): 69-77, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16896769

RESUMO

Interactions between herbivores and seed predators may have long-term consequences for plant populations that rely on persistent seed banks for recovery after unpredictable fires. We assessed the effects of browsing by deer and seed predation by rodents, ants and birds on the densities of seeds entering the seed bank of Ceanothus cuneatus var. rigidus, a maritime chaparral shrub in coastal California. Ceanothus produced many more seeds when protected from browsers in long-term experimental exclosures than did browsed plants, but the seed densities in the soil beneath browsed and unbrowsed Ceanothus were the same at the start of an intensive one-year study. The density of seeds in the soil initially increased in both treatments following summer seed drop: while densities returned to pre-drop levels within a few weeks under browsed plants, soil seed densities remained high for 5-8 months beneath unbrowsed plants. Rodent abundance (especially deer mice) was higher near unbrowsed plants than >30 m away, and rodents removed Ceanothus seeds from dishes in the experimental plots. At least in the short term, rodent density and rates of seed removal were inversely related to the intensity of browsing. Our data have management implications for maintaining viable Ceanothus populations by regulating the intensity of browsing and the timing, intensity and frequency of fires.


Assuntos
Ceanothus/fisiologia , Ecossistema , Cadeia Alimentar , Sementes/fisiologia , Análise de Variância , Animais , California , Roedores/fisiologia , Estações do Ano , Solo/análise
8.
Plant Physiol ; 139(1): 546-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16100359

RESUMO

Possible mechanical and hydraulic costs to increased cavitation resistance were examined among six co-occurring species of chaparral shrubs in southern California. We measured cavitation resistance (xylem pressure at 50% loss of hydraulic conductivity), seasonal low pressure potential (P(min)), xylem conductive efficiency (specific conductivity), mechanical strength of stems (modulus of elasticity and modulus of rupture), and xylem density. At the cellular level, we measured vessel and fiber wall thickness and lumen diameter, transverse fiber wall and total lumen area, and estimated vessel implosion resistance using (t/b)(h)(2), where t is the thickness of adjoining vessel walls and b is the vessel lumen diameter. Increased cavitation resistance was correlated with increased mechanical strength (r(2) = 0.74 and 0.76 for modulus of elasticity and modulus of rupture, respectively), xylem density (r(2) = 0.88), and P(min) (r(2) = 0.96). In contrast, cavitation resistance and P(min) were not correlated with decreased specific conductivity, suggesting no tradeoff between these traits. At the cellular level, increased cavitation resistance was correlated with increased (t/b)(h)(2) (r(2) = 0.95), increased transverse fiber wall area (r(2) = 0.89), and decreased fiber lumen area (r(2) = 0.76). To our knowledge, the correlation between cavitation resistance and fiber wall area has not been shown previously and suggests a mechanical role for fibers in cavitation resistance. Fiber efficacy in prevention of vessel implosion, defined as inward bending or collapse of vessels, is discussed.


Assuntos
Ceanothus/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Rhus/fisiologia , Rosaceae/fisiologia , Fenômenos Biomecânicos , Ceanothus/citologia , Ceanothus/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Rhus/citologia , Rhus/efeitos dos fármacos , Rosaceae/citologia , Rosaceae/efeitos dos fármacos , Água/metabolismo , Água/farmacologia
9.
Z Naturforsch C J Biosci ; 59(7-8): 459-62, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15813361

RESUMO

Leaf glands of Ceanothus species excrete a lipophilic material that contains a variety of flavonoids. Most of these are aglycones, but some glycosides were also observed. Seven out of eight species exhibit flavonols, whereas flavones are excreted by only one species. Four species produce flavanones and dihydroflavonols; one excretes a remarkable quantity of flavonol glycosides. The exudate flavonoids thus form different patterns that might be characteristic for different Ceanothus species.


Assuntos
Ceanothus/fisiologia , Flavonoides/química , Flavonoides/metabolismo , Folhas de Planta/fisiologia , Ceanothus/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/ultraestrutura , Caules de Planta/fisiologia , Especificidade da Espécie
10.
Oecologia ; 136(2): 213-9, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12740694

RESUMO

Freeze/thaw stress was examined in chaparral shrubs of the genus Ceanothus to determine the interactive effects of freezing and drought and to consider which is the more vulnerable component, the living leaves (symplast) or the non-living water transport system (apoplast). We hypothesized that where Ceanothus species co-occurred, the more inland species C. crassifolius would be more tolerant of low temperatures than the coastal species C. spinosus, both in terms of leaf survival (LT(50), or the temperature at which there is 50% loss of function or viability) and in terms of resistance to freezing-induced embolism (measurements of percent loss hydraulic conductivity due to embolism following freeze/thaw). Cooling experiments on 2 m long winter-acclimated shoots resulted in LT(50) values of about -10 degrees C for C. spinosus versus -18 degrees C for C. crassifolius. Freeze-thaw cycles resulted in no change in embolism when the plants were well hydrated (-0.7 to -2.0 MPa). However, when plants were dehydrated to -5.0 MPa, C. spinosus became 96% embolized with freeze/thaw, versus only 61% embolism for C. crassifolius. Stems of C. crassifolius became 90% and 97% embolized at -6.6 and -8.0 MPa, respectively, meaning that even in this species, stems could be more vulnerable than leaves under conditions of extreme water stress combined with freeze/thaw events. The dominance of C. crassifolius at colder sites and the restriction of C. spinosus to warmer sites are consistent with both the relative tolerance of their symplasts to low temperatures and the relative tolerance of their apoplasts to freeze events in combination with drought stress.


Assuntos
Ceanothus/fisiologia , Desastres , Adaptação Fisiológica , California , Ecossistema , Congelamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA