Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(3): 2751-2761, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583780

RESUMO

BACKGROUND: All molecules, structures, cells in organisms are subjected to destruction during the process of vital activities. In the organisms of most multicellular animals and humans, the regeneration process always takes place: destruction of old cells and their replacement with the new. The replacement of cells happens even if the cells are in perfect condition. The sooner the organism destroys the cells that emerged a certain time ago and replaces them with the new (i.e., the higher is the regeneration tempo), the younger the organism is. DISCUSSION: Stem cells are progenitor cells of the substituting young cells. Asymmetric division of a mother stem cell gives rise to one, analogous to the mother, daughter cell, and to a second daughter cell that takes the path of further differentiation. Despite such asymmetric divisions, the pool of stem cells diminishes in its quantity over time. Moreover, intervals between stem cell divisions increase. The combination of these two processes causes the decline of regeneration tempo and aging of the organism. CONCLUSION: During asymmetric stem cell divisions daughter cells, with preserved potency of the stem cell, selectively conserve mother (old) centrioles. In contrast with molecules of nuclear DNA, reparations do not take place in centrioles. Hypothetically, old centrioles are more subjected to destruction than other structures of a cell-which makes centrioles potentially the main structure of aging.


Assuntos
Diferenciação Celular , Proliferação de Células , Centríolos , Células-Tronco , Células-Tronco/citologia , Células-Tronco/patologia , Humanos , Animais , Centríolos/patologia , Morfogênese , Envelhecimento/patologia , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Modelos Biológicos
2.
Cell Rep Methods ; 2(11): 100322, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452870

RESUMO

Electron microscopy is the gold standard to characterize centrosomal ultrastructure. However, production of significant morphometrical data is highly limited by acquisition time. We therefore developed a generalizable, semi-automated high-throughput electron tomography strategy to study centrosome aberrations in sparse patient-derived cancer cells at nanoscale. As proof of principle, we present electron tomography data on 455 centrioles of CD138pos plasma cells from one patient with relapsed/refractory multiple myeloma and CD138neg bone marrow mononuclear cells from three healthy donors as a control. Plasma cells from the myeloma patient displayed 122 over-elongated centrioles (48.8%). Particularly mother centrioles also harbored gross structural abnormalities, including fragmentation and disturbed microtubule cylinder formation, while control centrioles were phenotypically unremarkable. These data demonstrate the feasibility of our scalable high-throughput electron tomography strategy to study structural centrosome aberrations in primary tumor cells. Moreover, our electron tomography workflow and data provide a resource for the characterization of cell organelles beyond centrosomes.


Assuntos
Centríolos , Mieloma Múltiplo , Humanos , Centríolos/patologia , Mieloma Múltiplo/diagnóstico por imagem , Tomografia com Microscopia Eletrônica , Fluxo de Trabalho , Centrossomo/ultraestrutura
3.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241634

RESUMO

Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Centríolos/patologia , Centríolos/ultraestrutura , Cílios/patologia , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
4.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34237032

RESUMO

Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.


Assuntos
Centríolos/genética , Instabilidade Cromossômica , Microcefalia/genética , Células-Tronco Neurais/patologia , Animais , Encéfalo/citologia , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Microcefalia/patologia , Microscopia Eletrônica de Transmissão , Imagem Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/ultraestrutura , Cultura Primária de Células , Imagem com Lapso de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
PLoS Comput Biol ; 17(5): e1008765, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979341

RESUMO

The presence of extra centrioles, termed centrosome amplification, is a hallmark of cancer. The distribution of centriole numbers within a cancer cell population appears to be at an equilibrium maintained by centriole overproduction and selection, reminiscent of mutation-selection balance. It is unknown to date if the interaction between centriole overproduction and selection can quantitatively explain the intra- and inter-population heterogeneity in centriole numbers. Here, we define mutation-selection-like models and employ a model selection approach to infer patterns of centriole overproduction and selection in a diverse panel of human cell lines. Surprisingly, we infer strong and uniform selection against any number of extra centrioles in most cell lines. Finally we assess the accuracy and precision of our inference method and find that it increases non-linearly as a function of the number of sampled cells. We discuss the biological implications of our results and how our methodology can inform future experiments.


Assuntos
Centrossomo/patologia , Modelos Biológicos , Evolução Biológica , Linhagem Celular , Proliferação de Células , Centríolos/genética , Centríolos/patologia , Biologia Computacional , Humanos , Conceitos Matemáticos , Mutação , Neoplasias/genética , Neoplasias/patologia , Dinâmica não Linear , Seleção Genética
6.
J Assist Reprod Genet ; 38(5): 1197-1205, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33619679

RESUMO

PURPOSE: To study the potential paternal contribution to aneuploidies in the man of a couple who obtained trisomic embryos with natural and assisted fertilization. METHODS: Semen analysis, immunofluorescence for localization of tubulin and centrin 1, transmission electron microscopy (TEM), and fluorescence in situ hybridization (FISH) analysis for chromosomes 18 and 9 were performed. Sperm of fertile men were used as controls. RESULTS: The percentages of sperm motility and normal forms were decreased. The percentages of sperm with tail reduced in dimension, headless tails, coiled tails, and altered head-tail junction were significantly higher (P < 0.01) in the patient than in controls, whereas the percentage of sperm with a normal centrin 1 localization (two spots in the centriolar area) was significantly reduced (P < 0.01) in the patient. Immunofluorescence with anti-tubulin antibody showed that in most of the patient's sperm connecting pieces (83.00 ± 1.78%), two spots were present, indicating prominent proximal centriole/centriolar adjunct and evident distal centriole, whereas controls' sperm displayed a single spot, indicating the proximal centriole. The percentage of sperm with two spots was significantly higher (P < 0.01) in the patient than in controls. TEM analysis showed that centriolar adjuncts of the patient's sperm were significantly longer (721.80 ± 122.26 nm) than in controls' sperm (310.00 ± 64.11 nm; P < 0.001). The aneuploidy frequencies of the patient's sperm, detected by FISH analysis, were increased with respect to controls. CONCLUSION: A paternal contribution to sperm aneuploidies cannot be excluded since the patient's sperm showed altered morphology, immature centriolar adjunct, presence of evident distal centriole, scarce presence of centrin 1, and high aneuploidy frequency.


Assuntos
Aneuploidia , Centríolos/genética , Fertilização in vitro , Espermatozoides/anormalidades , Centríolos/patologia , Centrossomo/patologia , Fertilização/genética , Humanos , Hibridização in Situ Fluorescente , Infertilidade Masculina/epidemiologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Microscopia Eletrônica de Transmissão , Análise do Sêmen/métodos , Motilidade dos Espermatozoides/genética , Espermatozoides/patologia
7.
Dev Cell ; 55(2): 224-236.e6, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33038333

RESUMO

Motile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here, we demonstrate that among the many motile cilia of a multiciliated cell, a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells, originates from parental centrioles, and its cellular position is biased and dependent on ciliary beating. Furthermore, we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.


Assuntos
Corpos Basais/patologia , Diferenciação Celular/fisiologia , Centríolos/patologia , Cílios/patologia , Células Cultivadas , Centríolos/fisiologia , Cílios/fisiologia , Células Epiteliais/patologia , Epitélio/patologia , Humanos , Microscopia/métodos
8.
Cells ; 9(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316195

RESUMO

Infertility is a devastating experience for both partners as they try to conceive. Historically, when a couple could not conceive, the woman has carried the stigma of infertility; however, men and women are just as likely to contribute to the couple's infertility. With the development of assisted reproductive technology (ART), the treatment burden for male and unexplained infertility has fallen mainly on women. Equalizing this burden requires reviving research on male infertility to both improve treatment options and enable natural conception. Despite many scientific efforts, infertility in men due to sperm dysfunction is mainly diagnosed by a semen analysis. The semen analysis is limited as it only examines general sperm properties such as concentration, motility, and morphology. A diagnosis of male infertility rarely includes an assessment of internal sperm components such as DNA, which is well documented to have an impact on infertility, or other components such as RNA and centrioles, which are beginning to be adopted. Assessment of these components is not typically included in current diagnostic testing because available treatments are limited. Recent research has expanded our understanding of sperm biology and suggests that these components may also contribute to the failure to achieve pregnancy. Understanding the sperm's internal components, and how they contribute to male infertility, would provide avenues for new therapies that are based on treating men directly for male infertility, which may enable less invasive treatments and even natural conception.


Assuntos
Centríolos/metabolismo , Infertilidade Masculina/diagnóstico , Estresse Oxidativo/genética , RNA/genética , Técnicas de Reprodução Assistida , Análise do Sêmen/métodos , Espermatozoides/metabolismo , Centríolos/patologia , Fragmentação do DNA , Feminino , Humanos , Infertilidade Masculina/terapia , Masculino , RNA/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/citologia , Saúde da Mulher
9.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271878

RESUMO

Centrioles are precisely built microtubule-based structures that assemble centrosomes and cilia. Aberrations in centriole structure are common in tumors, yet how these aberrations arise is unknown. Analysis of centriole structure is difficult because it requires demanding electron microscopy. Here we employ expansion microscopy to study the origins of centriole structural aberrations in large populations of human cells. We discover that centrioles do not have an elongation monitoring mechanism, which renders them prone to over-elongation, especially during prolonged mitosis induced by various factors, importantly including supernumerary centrioles. We identify that mitotic centriole over-elongation is dependent on mitotic Polo-like kinase 1, which we uncover as a novel regulator of centriole elongation in human cycling cells. While insufficient Plk1 levels lead to the formation of shorter centrioles lacking a full set of microtubule triplets, its overactivity results in over-elongated and structurally aberrant centrioles. Our data help explain the origin of structurally aberrant centrioles and why centriole numerical and structural defects coexist in tumors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Centríolos/metabolismo , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Centríolos/patologia , Centríolos/ultraestrutura , Centrossomo/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Humanos , Microscopia Eletrônica , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
10.
Mol Biol Cell ; 30(7): 811-819, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30699045

RESUMO

Centrosome abnormalities are emerging hallmarks of cancer. The overproduction of centrosomes (known as centrosome amplification) has been reported in a variety of cancers and is currently being explored as a promising target for therapy. However, to understand different types of centrosome abnormalities and their impact on centrosome function during tumor progression, as well as to identify tumor subtypes that would respond to the targeting of a centrosome abnormality, a reliable method for accurately quantifying centrosomes in human tissue samples is needed. Here, we established a method of quantifying centrosomes at a single-cell level in different types of human tissue samples. We tested multiple anti-centriole and pericentriolar-material antibodies to identify bona fide centrosomes and multiplexed these with cell border markers to identify individual cells within the tissue. High-resolution microscopy was used to generate multiple Z-section images, allowing us to acquire whole cell volumes in which to scan for centrosomes. The normal cells within the tissue serve as internal positive controls. Our method provides a simple, accurate way to distinguish alterations in centrosome numbers at the level of single cells.


Assuntos
Centrossomo/patologia , Centrossomo/fisiologia , Análise de Célula Única/métodos , Proteínas de Transporte/análise , Centríolos/patologia , Centrossomo/metabolismo , Humanos , Neoplasias/metabolismo , Tubulina (Proteína)/análise
11.
J Cell Sci ; 132(3)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635446

RESUMO

Sperm cells are highly specialized mammalian cells, and their biogenesis requires unique intracellular structures. Perturbation of spermatogenesis often leads to male infertility. Here, we assess the role of a post-translational modification of tubulin, glutamylation, in spermatogenesis. We show that mice lacking the tubulin deglutamylase CCP5 (also known as AGBL5) do not form functional sperm. In these mice, spermatids accumulate polyglutamylated tubulin, accompanied by the occurrence of disorganized microtubule arrays, in particular in the sperm manchette. Spermatids further fail to re-arrange their intracellular space and accumulate organelles and cytosol, while nuclei condense normally. Strikingly, spermatids lacking CCP5 show supernumerary centrioles, suggesting that glutamylation could control centriole duplication. We show that most of these observed defects are also present in mice in which CCP5 is deleted only in the male germ line, strongly suggesting that they are germ-cell autonomous. Our findings reveal that polyglutamylation is, beyond its known importance for sperm flagella, an essential regulator of several microtubule-based functions during spermatogenesis. This makes enzymes involved in glutamylation prime candidates for being genes involved in male sterility.


Assuntos
Carboxipeptidases/genética , Infertilidade Masculina/genética , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Espermátides/metabolismo , Espermatogênese/genética , Tubulina (Proteína)/metabolismo , Animais , Carboxipeptidases/deficiência , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Centríolos/metabolismo , Centríolos/patologia , Centríolos/ultraestrutura , Citosol/metabolismo , Citosol/ultraestrutura , Ácido Glutâmico/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/patologia , Microtúbulos/ultraestrutura , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermátides/patologia , Espermátides/ultraestrutura , Tubulina (Proteína)/genética
12.
Cell Death Dis ; 9(11): 1066, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337519

RESUMO

Polo-like kinase 4 (PLK4) is indispensable for precise control of centriole duplication. Abnormal expression of PLK4 has been reported in many human cancers, and inhibition of PLK4 activity results in their mitotic arrest and apoptosis. Therefore, PLK4 may be a valid therapeutic target for antitumor therapy. However, clinically available small-molecule inhibitors targeting PLK4 are deficient and their underlying mechanisms still remain not fully clear. Herein, the effects of YLT-11 on breast cancer cells and the associated mechanism were investigated. In vitro, YLT-11 exhibited significant antiproliferation activities against breast cancer cells. Meanwhile, cells treated with YLT-11 exhibited effects consistent with PLK4 kinase inhibition, including dysregulated centriole duplication and mitotic defects, sequentially making tumor cells more vulnerable to chemotherapy. Furthermore, YLT-11 could strongly regulate downstream factors of PLK4, which was involved in cell cycle regulation, ultimately inducing apoptosis of breast cancer cell. In vivo, oral administration of YLT-11 significantly suppressed the tumor growth in human breast cancer xenograft models at doses that are well tolerated. In summary, the preclinical data show that YLT-11 could be a promising candidate drug for breast tumor therapy.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Centríolos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Acetamidas/síntese química , Antineoplásicos/síntese química , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Centríolos/patologia , Centríolos/ultraestrutura , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Indazóis/síntese química , Indazóis/farmacologia , Células MCF-7 , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
13.
Annu Rev Genomics Hum Genet ; 19: 177-200, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29799801

RESUMO

Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.


Assuntos
Predisposição Genética para Doença , Microcefalia/genética , Centríolos/patologia , Reparo do DNA , Replicação do DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuroglia/patologia
14.
J Dermatol Sci ; 91(1): 9-18, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29615326

RESUMO

BACKGROUND: Centrosomes contain two centrioles: a pre-existing mature centriole and a newly formed immature centriole. Each centriole is duplicated once within a cell cycle, which is crucial for proper centrosome duplication and cell division. OBJECTIVE: To describe the centrosome duplication cycle in human epidermis, Bowen's disease (BD), and squamous cell carcinoma (SCC). METHODS: Immunofluorescent staining of centriolar proteins and Ki-67 was used to evaluate cell cycles and the number of centrioles. Centrobin and Outer dense fiber of sperm tails 2 (ODF2) were used as markers for immature and mature centrioles, respectively. RESULTS: Normal human primary epidermal keratinocytes in a monolayered culture have one centrobin+ centriole (CTRB1+ cells) supposed in G0/G1 phases or have two centrobin+ centrioles (CTRB2+ cells) supposed in S-G2 phase. In a three-dimensional culture and in vivo human epidermis, the majority of suprabasal cells were CTRB2+ cells, in spite of their non-proliferative Ki-67- nature. The tumor mass of BD and SCC contained CTRB1+ cells and Ki-67+ proliferating and Ki-67- non-proliferative CTRB2+ cells. Clumping cells in BD had increased numbers of centrioles, with an approximate 1:1 to 2:1 ratio of centrobin+ to ODF2+ centrioles. CONCLUSIONS: The cell cycle arrest of suprabasal cells is distinct from the G0 arrest of monolayered epithelial cells. Tumor mass of BD and SCC contained non-proliferative cells with the characteristics of the suprabasal cells of normal epidermis. A constant ratio of the number of centrobin+ to ODF2+ centrioles indicates that multiple centrioles were induced by cell division failure rather than centriole overduplication in clumping cells.


Assuntos
Doença de Bowen/patologia , Carcinoma de Células Escamosas/patologia , Centríolos/patologia , Epiderme/fisiologia , Neoplasias Cutâneas/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Bowen/cirurgia , Carcinoma de Células Escamosas/cirurgia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/análise , Divisão Celular/fisiologia , Células Cultivadas , Centríolos/metabolismo , Células Epidérmicas , Células Epiteliais/citologia , Células Epiteliais/patologia , Proteínas de Choque Térmico/análise , Humanos , Queratinócitos , Antígeno Ki-67/análise , Pessoa de Meia-Idade , Cultura Primária de Células , Neoplasias Cutâneas/cirurgia , Adulto Jovem
15.
Mol Cancer Res ; 16(3): 517-527, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330283

RESUMO

Centrosome amplification (CA) is common in cancer and can arise by centriole overduplication or by cell doubling events, including the failure of cell division and cell-cell fusion. To assess the relative contributions of these two mechanisms, the number of centrosomes with mature/mother centrioles was examined by immunofluorescence in a tissue microarray of human melanomas and benign nevi (n = 79 and 17, respectively). The centrosomal protein 170 (CEP170) was used to identify centrosomes with mature centrioles; this is expected to be present in most centrosomes with cell doubling, but on fewer centrosomes with overduplication. Using this method, it was determined that the majority of CA in melanoma can be attributed to centriole overduplication rather than cell doubling events. As Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication, the hypothesis that PLK4 overexpression contributes to centriole overduplication was evaluated. PLK4 is significantly overexpressed in melanoma compared with benign nevi and in a panel of human melanoma cell lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL-28) compared with normal human melanocytes. Interestingly, although PLK4 expression did not correlate with CA in most cases, treatment of melanoma cells with a selective small-molecule PLK4 inhibitor (centrinone B) significantly decreased cell proliferation. The antiproliferative effects of centrinone B were also accompanied by induction of apoptosis.Implications: This study demonstrates that centriole overduplication is the predominant mechanism leading to centrosome amplification in melanoma and that PLK4 should be further evaluated as a potential therapeutic target for melanoma treatment. Mol Cancer Res; 16(3); 517-27. ©2018 AACR.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/patologia , Centrossomo/patologia , Melanoma/fisiopatologia , Divisão Celular , Proliferação de Células , Humanos
16.
Eur J Hum Genet ; 24(12): 1702-1706, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650967

RESUMO

It has been well documented that variants in genes encoding centrosomal proteins cause primary autosomal recessive microcephaly, although the association between centrosomal defects and the etiology of microcephaly syndromes is not fully understood. Polo-like kinase 4 (PLK4) is one of the centrosomal proteins required for centriole duplication. We here describe a patient with microcephaly and chorioretinopathy that harbors compound heterozygous missense variants, c.[442A>G]; [2336G>A], in the PLK4 gene. One of these variants, c.442A>G (p.(M148V)), resides in the kinase domain, and the other, c.2336G>A (p.(C779Y)), in the polo-box domain. Aberrant spindle formation was observed in a LCL derived from this patient. Overexpression experiments of the variant PLK4 proteins demonstrated that the p.(C779Y) but not the p.(M148V) had lost centriole overduplication ability. The altered mobility pattern of both variant proteins on a western blot further suggested alterations in post-translation modification. Our data lend support to the hypothesis that impaired centriole duplication caused by PLK4 variants may be involved in the etiology of microcephaly disorder.


Assuntos
Doenças da Coroide/genética , Oftalmopatias Hereditárias/genética , Heterozigoto , Microcefalia/genética , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Doenças Retinianas/genética , Centríolos/metabolismo , Centríolos/patologia , Doenças da Coroide/diagnóstico , Doenças da Coroide/metabolismo , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/metabolismo , Feminino , Células HeLa , Humanos , Recém-Nascido , Microcefalia/diagnóstico , Microcefalia/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Doenças Retinianas/diagnóstico , Doenças Retinianas/metabolismo
17.
J Clin Invest ; 125(9): 3657-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26301811

RESUMO

Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo. Compared with those from WT mice, primary kidney cells from Cep290-deficient mice exhibited supernumerary centrioles, decreased replication fork velocity, fork asymmetry, and increased levels of cyclin-dependent kinases (CDKs). Treatment of Cep290-deficient cells with CDK inhibitors rescued DNA damage and centriole number. Moreover, the loss of primary cilia that results from CEP290 dysfunction was rescued in 3D cell culture spheroids of primary murine kidney cells after exposure to CDK inhibitors. Together, our results provide a link between CEP290 and DNA replication stress and suggest CDK inhibition as a potential treatment strategy for a wide range of ciliopathy syndromes.


Assuntos
Antígenos de Neoplasias/metabolismo , Cerebelo/anormalidades , Dano ao DNA , Rim/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Retina/anormalidades , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Linhagem Celular , Centríolos/genética , Centríolos/metabolismo , Centríolos/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Proteínas do Citoesqueleto , Replicação do DNA , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Humanos , Rim/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Retina/metabolismo , Retina/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Postepy Hig Med Dosw (Online) ; 68: 1050-68, 2014 Jan 02.
Artigo em Polonês | MEDLINE | ID: mdl-25228514

RESUMO

The centrosomes are subcellular organelles composed of two centrioles surrounded by a pericentriolar material. In animal cells they are responsible for the organization of the interphase microtubule cytoskeleton including microtubule nucleation and elongation, their attachment and release. The centrosomes are also involved in the construction of the mitotic spindle and chromosome segregation. More than a century ago it was suggested that these structures might be involved in human diseases, including cancer. Cancer cells show a high frequency of centrosome aberrations, especially amplification. Centrosome defects may increase the incidence of multipolar mitoses that lead to chromosomal segregation abnormalities and aneuploidy, which is the predominant type of genomic instability found in human solid tumors. The number of these organelles in cells is strictly controlled and is dependent on the proper process of centrosome duplication. Multiple genes that are frequently found mutated in cancers encode proteins which participate in the regulation of centrosome duplication and the numeral integrity of centrosomes. In recent years there has been growing interest in the potential participation of centrosomes in the process of carcinogenesis, especially because centrosome abnormalities are observed in premalignant stages of cancer development. The common presence of abnormal centrosomes in cancer cells and the role these organelles play in the cells suggest that the factors controlling the number of centrosomes may be potential targets for cancer therapy.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Centrossomo/metabolismo , Centrossomo/patologia , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Centríolos/patologia , Centrossomo/ultraestrutura , Humanos , Neoplasias/patologia , Fuso Acromático/patologia
19.
FEBS Lett ; 588(15): 2366-72, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24951839

RESUMO

Centrioles function in the assembly of centrosomes and cilia. Structural and numerical centrosome aberrations have long been implicated in cancer, and more recent genetic evidence directly links centrosomal proteins to the etiology of ciliopathies, dwarfism and microcephaly. To better understand these disease connections, it will be important to elucidate the biogenesis of centrioles as well as the controls that govern centriole duplication during the cell cycle. Moreover, it remains to be fully understood how these organelles organize a variety of dynamic microtubule-based structures in response to different physiological conditions. In proliferating cells, centrosomes are crucial for the assembly of microtubule arrays, including mitotic spindles, whereas in quiescent cells centrioles function as basal bodies in the formation of ciliary axonemes. In this short review, we briefly introduce the key gene products required for centriole duplication. Then we discuss recent findings on the centriole duplication factor STIL that point to centrosome amplification as a potential root cause for primary microcephaly in humans. We also present recent data on the role of a disease-related centriole-associated protein complex, Cep164-TTBK2, in ciliogenesis.


Assuntos
Centríolos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microcefalia/genética , Animais , Proteínas de Ciclo Celular , Centríolos/genética , Centríolos/patologia , Proteínas do Citoesqueleto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(15): E1491-500, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706806

RESUMO

Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centríolos/patologia , Mitose/fisiologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Análise de Variância , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Cruzamentos Genéticos , Imunofluorescência , Genótipo , Hibridização In Situ , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA