Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(1): 28, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38287838

RESUMO

BACKGROUND: The centrosome is the main center of the organization of microtubules (MT) in the cell, the origin for the formation of flagella and cilia, as well as the site of many regulatory intracellular processes. In diploid cells, the centrosome includes two centrioles connected to some additional structures and surrounded by pericentriolar material. METHODS: The ultrastructure of the cells was studied using transmission electron microscopy on serial ultrathin sections. RESULTS: Here, using transmission electron microscopy on a complete series of ultrathin sections of the centrosome region, we studied the relation between the number of centrioles and ploidy in diploid cells of female wasps and haploid cells of male in the parasitoid wasp Anisopteromalus calandrae (Hymenoptera). It showed that the haploid cells of the male insect have the same number of centrioles as the diploid cells of the female. CONCLUSIONS: It can be concluded that there is no strict correlation between the number of chromosome sets (ploidy) and the number of centrioles in haplodiploid insects.


Assuntos
Centríolos , Vespas , Animais , Masculino , Feminino , Centríolos/genética , Centríolos/ultraestrutura , Vespas/genética , Haploidia , Diploide , Centrossomo
2.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174735

RESUMO

Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.


Assuntos
Centrossomo , Oócitos , Humanos , Masculino , Bovinos , Animais , Camundongos , Ratos , Oócitos/ultraestrutura , Centrossomo/ultraestrutura , Centríolos/ultraestrutura , Espermatozoides/ultraestrutura , Mamíferos
3.
Cells ; 11(5)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269380

RESUMO

The sperm competition theory, as proposed by Geoff Parker, predicts that sperm evolve through a cascade of changes. As an example, internal fertilization is followed by sperm morphology diversification. However, little is known about the evolution of internal sperm structures. The centriole has an ancient and evolutionarily conserved canonical structure with signature 9-fold, radially symmetric microtubules that form the cell's centrosomes, cilia, and flagella. Most animal spermatozoa have two centrioles, one of which forms the spermatozoan flagellum. Both are delivered to the egg and constitute the embryo's first two centrosomes. The spermatozoa of mammals and insects only have one recognizable centriole with a canonical structure. A second sperm centriole with an atypical structure was recently reported in both animal groups and which, prior to this, eluded discovery by standard techniques and criteria. Because the ancestors of both mammals and insects reproduced by internal fertilization, we hypothesized that the transition from two centrioles with canonical composition in ancestral sperm to an atypical centriolar composition characterized by only one canonical centriole evolved preferentially after internal fertilization. We examined fish because of the diversity of species available to test this hypothesis−as some species reproduce via internal and others via external fertilization−and because their spermatozoan ultrastructure has been extensively studied. Our literature search reports on 277 fish species. Species reported with atypical centriolar composition are specifically enriched among internal fertilizers compared to external fertilizers (7/34, 20.6% versus 2/243, 0.80%; p < 0.00001, odds ratio = 32.4) and represent phylogenetically unrelated fish. Atypical centrioles are present in the internal fertilizers of the subfamily Poeciliinae. Therefore, internally fertilizing fish preferentially and independently evolved spermatozoa with atypical centriolar composition multiple times, agreeing with Parker's cascade theory.


Assuntos
Centríolos , Fertilizantes , Animais , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Fertilização , Masculino , Mamíferos , Espermatozoides/ultraestrutura
4.
Nat Commun ; 12(1): 6042, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654813

RESUMO

Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Linhagem Celular , Centríolos/ultraestrutura , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cílios , Feminino , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/ultraestrutura , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Neurônios
5.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440763

RESUMO

Among the morphological processes that characterize the early stages of Drosophila oogenesis, the dynamic of the centrioles deserves particular attention. We re-examined the architecture and the distribution of the centrioles within the germarium and early stages of the vitellarium. We found that most of the germ cell centrioles diverge from the canonical model and display notable variations in size. Moreover, duplication events were frequently observed within the germarium in the absence of DNA replication. Finally, we report the presence of an unusually long centriole that is first detected in the cystoblast and is always associated with the developing oocyte. This centriole is directly inherited after the asymmetric division of the germline stem cells and persists during the process of oocyte selection, thus already representing a marker for oocyte identification at the beginning of its formation and during the ensuing developmental stages.


Assuntos
Centríolos/fisiologia , Drosophila melanogaster/fisiologia , Oócitos/fisiologia , Oogênese , Animais , Centríolos/genética , Centríolos/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Feminino , Microscopia Eletrônica de Transmissão , Oócitos/ultraestrutura , Fatores de Tempo
6.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241634

RESUMO

Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Centríolos/patologia , Centríolos/ultraestrutura , Cílios/patologia , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
7.
Nat Commun ; 12(1): 3805, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155202

RESUMO

Centrioles are evolutionarily conserved multi-protein organelles essential for forming cilia and centrosomes. Centriole biogenesis begins with self-assembly of SAS-6 proteins into 9-fold symmetrical ring polymers, which then stack into a cartwheel that scaffolds organelle formation. The importance of this architecture has been difficult to decipher notably because of the lack of precise tools to modulate the underlying assembly reaction. Here, we developed monobodies against Chlamydomonas reinhardtii SAS-6, characterizing three in detail with X-ray crystallography, atomic force microscopy and cryo-electron microscopy. This revealed distinct monobody-target interaction modes, as well as specific consequences on ring assembly and stacking. Of particular interest, monobody MBCRS6-15 induces a conformational change in CrSAS-6, resulting in the formation of a helix instead of a ring. Furthermore, we show that this alteration impairs centriole biogenesis in human cells. Overall, our findings identify monobodies as powerful molecular levers to alter the architecture of multi-protein complexes and tune centriole assembly.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
8.
Nat Commun ; 12(1): 3808, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155206

RESUMO

Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail - the centriole - but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC's right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system.


Assuntos
Motilidade dos Espermatozoides/fisiologia , Animais , Centríolos/fisiologia , Centríolos/ultraestrutura , Humanos , Masculino , Mamíferos , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Cabeça do Espermatozoide/fisiologia , Cauda do Espermatozoide/fisiologia , Cauda do Espermatozoide/ultraestrutura
9.
Methods Mol Biol ; 2329: 249-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085228

RESUMO

Expansion microscopy is an imaging method based on isotropic physical expansion of biological samples, which improves optical resolution and allows imaging of subresolutional cellular components by conventional microscopes. Centrioles are small microtubule-based cylindrical structures that build centrosomes and cilia, two organelles essential for vertebrates. Due to a centriole's small size, electron microscopy has traditionally been used to study centriole length and ultrastructural features. Recently, expansion microscopy has been successfully used as an affordable and accessible alternative to electron microscopy in the analysis of centriole and cilia length and structural features. Here, we describe an expansion microscopy approach for the analysis of centrioles and cilia in large populations of mammalian adherent and nonadherent cells and multiciliated cultures.


Assuntos
Centríolos/ultraestrutura , Cílios/ultraestrutura , Adesão Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular , Humanos , Microscopia
10.
PLoS Comput Biol ; 17(5): e1008359, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970906

RESUMO

How cells control the numbers of subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on low-abundance rate-limiting factors. How can exactly one centriole copy be produced given the variation in the concentration of these key factors? Hitherto, tentative explanations of this control evoked lateral inhibition- or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors but how strict centriole number is regulated remains unsolved. Here, a novel solution to centriole copy number control is proposed based on the assembly of a centriolar scaffold, the cartwheel. We assume that cartwheel building blocks accumulate around the mother centriole at supercritical concentrations, sufficient to assemble one or more cartwheels. Our key postulate is that once the first cartwheel is formed it continues to elongate by stacking the intermediate building blocks that would otherwise form supernumerary cartwheels. Using stochastic models and simulations, we show that this mechanism may ensure formation of one and only one cartwheel robustly over a wide range of parameter values. By comparison to alternative models, we conclude that the distinctive signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and the translation of stochasticity in building block concentrations into variation in cartwheel numbers or length.


Assuntos
Centríolos/metabolismo , Centríolos/ultraestrutura , Modelos Biológicos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Centríolos/química , Biologia Computacional , Simulação por Computador , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Processos Estocásticos
11.
EMBO J ; 40(7): e107410, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33694216

RESUMO

Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.


Assuntos
Cauda do Espermatozoide/ultraestrutura , Animais , Axonema/ultraestrutura , Movimento Celular , Centríolos/ultraestrutura , Cílios/fisiologia , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Cavalos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cauda do Espermatozoide/fisiologia , Suínos
12.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533934

RESUMO

The centrosome is the main microtubule-organizing center in animal cells. It comprises of two centrioles and the surrounding pericentriolar material. Protein organization at the outer layer of the centriole and outward has been studied extensively; however, an overall picture of the protein architecture at the centriole core has been missing. Here we report a direct view of Drosophila centriolar proteins at ∼50-nm resolution. This reveals a Sas6 ring at the C-terminus, where it overlaps with the C-terminus of Cep135. The ninefold symmetrical pattern of Cep135 is further conveyed through Ana1-Asterless axes that extend past the microtubule wall from between the blades. Ana3 and Rcd4, whose termini are close to Cep135, are arranged in ninefold symmetry that does not match the above axes. During centriole biogenesis, Ana3 and Rcd4 are sequentially loaded on the newly formed centriole and are required for centriole-to-centrosome conversion through recruiting the Cep135-Ana1-Asterless complex. Together, our results provide a spatiotemporal map of the centriole core and implications of how the structure might be built.


Assuntos
Centríolos/metabolismo , Centríolos/ultraestrutura , Animais , Linhagem Celular , Centríolos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Domínios Proteicos
13.
Semin Cell Dev Biol ; 110: 123-138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33455859

RESUMO

Centrosomes are composed of two orthogonally arranged centrioles surrounded by an electron-dense matrix called the pericentriolar material (PCM). Centrioles are cylinders with diameters of ~250 nm, are several hundred nanometres in length and consist of 9-fold symmetrically arranged microtubules (MT). In dividing animal cells, centrosomes act as the principal MT-organising centres and they also organise actin, which tunes cytoplasmic MT nucleation. In some specialised cells, the centrosome acquires additional critical structures and converts into the base of a cilium with diverse functions including signalling and motility. These structures are found in most eukaryotes and are essential for development and homoeostasis at both cellular and organism levels. The ultrastructure of centrosomes and their derived organelles have been known for more than half a century. However, recent advances in a number of techniques have revealed the high-resolution structures (at Å-to-nm scale resolution) of centrioles and have begun to uncover the molecular principles underlying their properties, including: protein components; structural elements; and biogenesis in various model organisms. This review covers advances in our understanding of the features and processes that are critical for the biogenesis of the evolutionarily conserved structures of the centrosomes. Furthermore, it discusses how variations of these aspects can generate diversity in centrosome structure and function among different species and even between cell types within a multicellular organism.


Assuntos
Centríolos/ultraestrutura , Cílios/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Biogênese de Organelas , Actinas/genética , Actinas/metabolismo , Animais , Biodiversidade , Evolução Biológica , Ciclo Celular/genética , Centríolos/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorófitas/ultraestrutura , Cílios/metabolismo , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Regulação da Expressão Gênica , Humanos , Proteínas Associadas aos Microtúbulos/classificação , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Especificidade da Espécie , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
14.
Semin Cell Dev Biol ; 110: 51-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32362381

RESUMO

Multiciliated cells (MCC) project dozens to hundreds of motile cilia from the cell surface to generate fluid flow across epithelial surfaces or turbulence to promote the transport of gametes. The MCC differentiation program is initiated by GEMC1 and MCIDAS, members of the geminin family, that activate key transcription factors, including p73 and FOXJ1, to control the multiciliogenesis program. To support the generation of multiple motile cilia, MCCs must undergo massive centriole amplification to generate a sufficient number of basal bodies (modified centrioles). This transcriptional program involves the generation of deuterosomes, unique structures that act as platforms to regulate centriole amplification, the reactivation of cell cycle programs to control centriole amplification and release, and extensive remodeling of the cytoskeleton. This review will focus on providing an overview of the transcriptional regulation of MCCs and its connection to key processes, in addition to highlighting exciting recent developments and open questions in the field.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Centríolos/ultraestrutura , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
15.
Semin Cell Dev Biol ; 110: 70-88, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32747192

RESUMO

The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Cílios/metabolismo , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas/genética , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Animais , Antígenos de Neoplasias/metabolismo , Transporte Biológico , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centríolos/ultraestrutura , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Transdução de Sinal Luminoso , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Fosfoproteínas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
16.
Microscopy (Oxf) ; 70(3): 308-315, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-33258953

RESUMO

Multiciliogenesis is a cascading process for generating hundreds of motile cilia in single cells. In vertebrates, this process has been investigated in the ependyma of brain ventricles and the ciliated epithelia of the airway and oviduct. Although the early steps to amplify centrioles have been characterized in molecular detail, subsequent steps to establish multicilia have been relatively overlooked. Here, we focused on unusual cilia-related structures previously observed in wild-type mouse ependyma using transmission electron microscopy and analyzed their ultrastructural features and the frequency of their occurrence. In the ependyma, $\sim$5% of cilia existed as bundles; while the majority of the bundles were paired, bundles of more than three cilia were also found. Furthermore, apical protrusions harboring multiple sets of axonemes were occasionally observed (0-2 per section), suggesting an unusual mode of ciliogenesis. In trachea and oviduct epithelia, ciliary bundles were absent, but protrusions containing multiple axonemes were observed. At the base of such protrusions, certain axonemes were completely enwrapped by membranes, whereas others remained incompletely enwrapped. These data suggested that the late steps of multiciliogenesis might include a unique process underlying the development of cilia, which is distinct from the ciliogenesis of primary cilia.


Assuntos
Centríolos/ultraestrutura , Cílios/ultraestrutura , Epêndima/citologia , Células Epiteliais/citologia , Oviductos/citologia , Traqueia/citologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão
17.
Cells ; 9(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987651

RESUMO

The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.


Assuntos
Centrossomo/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Corpos Basais/metabolismo , Centríolos/metabolismo , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos
18.
EMBO J ; 39(22): e106249, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32954505

RESUMO

Centrioles are polarized microtubule-based organelles that seed the formation of cilia, and which assemble from a cartwheel containing stacked ring oligomers of SAS-6 proteins. A cryo-tomography map of centrioles from the termite flagellate Trichonympha spp. was obtained previously, but higher resolution analysis is likely to reveal novel features. Using sub-tomogram averaging (STA) in T. spp. and Trichonympha agilis, we delineate the architecture of centriolar microtubules, pinhead, and A-C linker. Moreover, we report ~25 Å resolution maps of the central cartwheel, revealing notably polarized cartwheel inner densities (CID). Furthermore, STA of centrioles from the distant flagellate Teranympha mirabilis uncovers similar cartwheel architecture and a distinct filamentous CID. Fitting the CrSAS-6 crystal structure into the flagellate maps and analyzing cartwheels generated in vitro indicate that SAS-6 rings can directly stack onto one another in two alternating configurations: with a slight rotational offset and in register. Overall, improved STA maps in three flagellates enabled us to unravel novel architectural features, including of centriole polarity and cartwheel stacking, thus setting the stage for an accelerated elucidation of underlying assembly mechanisms.


Assuntos
Centríolos/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia/métodos , Adesão Celular , Cílios/ultraestrutura , Microtúbulos/ultraestrutura , Parabasalídeos/citologia
19.
EMBO J ; 39(22): e106246, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32954513

RESUMO

Centrioles are evolutionarily conserved barrels of microtubule triplets that form the core of the centrosome and the base of the cilium. While the crucial role of the proximal region in centriole biogenesis has been well documented, its native architecture and evolutionary conservation remain relatively unexplored. Here, using cryo-electron tomography of centrioles from four evolutionarily distant species, we report on the architectural diversity of the centriole's proximal cartwheel-bearing region. Our work reveals that the cartwheel central hub is constructed from a stack of paired rings with cartwheel inner densities inside. In both Paramecium and Chlamydomonas, the repeating structural unit of the cartwheel has a periodicity of 25 nm and consists of three ring pairs, with 6 radial spokes emanating and merging into a single bundle that connects to the microtubule triplet via the D2-rod and the pinhead. Finally, we identified that the cartwheel is indirectly connected to the A-C linker through the triplet base structure extending from the pinhead. Together, our work provides unprecedented evolutionary insights into the architecture of the centriole proximal region, which underlies centriole biogenesis.


Assuntos
Centríolos/fisiologia , Centríolos/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Centrossomo , Chlamydomonas reinhardtii/fisiologia , Cílios , Humanos , Microtúbulos , Modelos Moleculares , Naegleria/fisiologia , Paramecium tetraurellia/fisiologia
20.
Elife ; 92020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32946374

RESUMO

Centrioles are characterized by a nine-fold arrangement of microtubule triplets held together by an inner protein scaffold. These structurally robust organelles experience strenuous cellular processes such as cell division or ciliary beating while performing their function. However, the molecular mechanisms underlying the stability of microtubule triplets, as well as centriole architectural integrity remain poorly understood. Here, using ultrastructure expansion microscopy for nanoscale protein mapping, we reveal that POC16 and its human homolog WDR90 are components of the microtubule wall along the central core region of the centriole. We further found that WDR90 is an evolutionary microtubule associated protein. Finally, we demonstrate that WDR90 depletion impairs the localization of inner scaffold components, leading to centriole structural abnormalities in human cells. Altogether, this work highlights that WDR90 is an evolutionary conserved molecular player participating in centriole architecture integrity.


Cells are made up of compartments called organelles that perform specific roles. A cylindrical organelle called the centriole is important for a number of cellular processes, ranging from cell division to movement and signaling. Each centriole contains nine blades made up of protein filaments called microtubules, which link together to form a cylinder. This well-known structure can be found in a variety of different species. Yet, it is unclear how centrioles are able to maintain this stable architecture whilst carrying out their various different cell roles. In early 2020, a group of researchers discovered a scaffold protein at the center of centrioles that helps keep the microtubule blades stable. Further investigation suggested that another protein called WDR90 may also help centrioles sustain their cylindrical shape. However, the exact role of this protein was poorly understood. To determine the role of WDR90, Steib et al. ­ including many of the researchers involved in the 2020 study ­ used a method called Ultrastructure Expansion Microscopy to precisely locate the WDR90 protein in centrioles. This revealed that WDR90 is located on the microtubule wall of centrioles in green algae and human cells grown in the lab. Further experiments showed that the protein binds directly to microtubules and that removing WDR90 from human cells causes centrioles to lose their scaffold proteins and develop structural defects. This investigation provides fundamental insights into the structure and stability of centrioles. It shows that single proteins are key components in supporting the structural integrity of organelles and shaping their overall architecture. Furthermore, these findings demonstrate how ultrastructure expansion microscopy can be used to determine the role of individual proteins within a complex structure.


Assuntos
Centríolos , Proteínas do Citoesqueleto , Microtúbulos , Animais , Bovinos , Linhagem Celular , Células Cultivadas , Centríolos/metabolismo , Centríolos/ultraestrutura , Chlamydomonas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/ultraestrutura , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...