Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
World J Gastroenterol ; 30(14): 2038-2058, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38681131

RESUMO

BACKGROUND: Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM: To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS: AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS: Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION: The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.


Assuntos
Ceruletídeo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas , Pancreatite , Fatores de Transcrição , Animais , Ceruletídeo/toxicidade , Camundongos , Pancreatite/genética , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/metabolismo , Perfilação da Expressão Gênica/métodos , Pâncreas/patologia , Pâncreas/metabolismo , Humanos , Transcriptoma , Masculino , Transdução de Sinais , Células Acinares/metabolismo , Células Acinares/patologia
2.
Biochem Biophys Res Commun ; 708: 149780, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518725

RESUMO

Diverse animal models have been used to study postpancreatitis diabetes mellitus (PPDM) development; however, no study has yet conducted a comparative analysis of the specific differences in glucose homeostasis and islet injury between these models. Therefore, we investigated the differences in pancreatic islet injury and glucose homeostasis among diverse strains in a cerulein-induced acute pancreatitis (AP) model to determine the appropriate animal model for PPDM. BALB/cJ, C57BL/6J, C57BL/6 N, and FVB/NJ mice were administered cerulein to induce AP. Serum amylase levels, pancreatic acinar injury, blood glucose homeostasis, islet function, and islet injury were measured and analyzed. All strains exhibited elevated amylase secretion post pancreatitis, and BALB/cJ, C57BL/6J, and C57BL/6 N mice exhibited sex-related differences. All strains exhibited pancreatic acinar injury post pancreatitis but mostly recovered within 15 days. Overall, glucose homeostasis remained balanced post pancreatitis in all strains compared to that in the control groups, except in FVB/NJ male and female mice, which exhibited an imbalance in glucose homeostasis on day 7 post pancreatitis. All the strains, except BALB/cJ mice, exhibited a decline in Homeostasis model assessment-ß(HOMA-ß) values post pancreatitis, with significant decrease in C57BL/6J females and FVB/NJ males. Islet size decreased post pancreatitis in all strains, except BALB/cJ mice. Pancreatic islet insulin secretion levels significantly decreased in male FVB/NJ mice post pancreatitis onset and did not recover within 15 days. Therefore, FVB/NJ male mice are a useful model for studying PPDM.


Assuntos
Pancreatite , Camundongos , Masculino , Feminino , Animais , Pancreatite/induzido quimicamente , Ceruletídeo/toxicidade , Doença Aguda , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Glicemia , Homeostase , Amilases
3.
Toxicol Sci ; 199(1): 120-131, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407484

RESUMO

The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.


Assuntos
Células Acinares , Apoptose , Éteres Difenil Halogenados , Pancreatite Crônica , Pancreatite , Animais , Éteres Difenil Halogenados/toxicidade , Apoptose/efeitos dos fármacos , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/metabolismo , Masculino , Pancreatite/induzido quimicamente , Pancreatite/patologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Ceruletídeo/toxicidade , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/patologia , Células Estreladas do Pâncreas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retardadores de Chama/toxicidade , Células Cultivadas
4.
Acta Pharmacol Sin ; 45(3): 570-580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012292

RESUMO

Amuc_1100 is a membrane protein from Akkermansia muciniphila, which has been found to play a role in host immunological homeostasis in the gastrointestinal tract by activating TLR2 and TLR4. In this study we investigated the effects and underlying mechanisms of Amuc_1100 on acute pancreatitis (AP) induced in mice by intraperitoneal injection of caerulein and lipopolysaccharide (LPS). The mice were treated with the protein Amuc_1100 (3 µg, i.g.) for 20 days before caerulein injection. Cecal contents of the mice were collected for 16S rRNA sequencing. We found that pretreatment with Amuc_1100 significantly alleviated AP-associated pancreatic injury, reduced serum amylase and lipase. Amuc_1100 pretreatment significantly inhibited the expression of proinflammatory cytokines (TNF-α, IL-1ß, IFN-γ and IL-6) in spleen and pancreas through inhibiting NF-κB signaling pathway. Moreover, Amuc_1100 pretreatment significantly decreased the inflammatory infiltration, accompanied by the reduction of Ly6C+ macrophages and neutrophils in the spleen of AP mice. Gut microbiome analysis showed that the abundance of Bacteroidetes, Proteobacteria, Desulfobacterota and Campilobacterota was decreased, while the proportion of Firmicutes and Actinobacteriota was increased in AP mice pretreated with Amuc_1100. We further demonstrated that Amuc_1100 pretreatment restored the enrichment of tryptophan metabolism, which was mediated by intestinal flora. These results provide new evidence that Amuc_1100 lessens the severity of AP through its anti-inflammatory properties with a reduction of macrophages and neutrophil infiltration, as well as its regulation of the composition of intestinal flora and tryptophan metabolism.


Assuntos
Microbioma Gastrointestinal , Pancreatite , Animais , Camundongos , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Doença Aguda , Ceruletídeo/toxicidade , RNA Ribossômico 16S , Triptofano
5.
Pancreatology ; 23(8): 911-918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981522

RESUMO

BACKGROUND/OBJECTIVE: Acute pancreatitis is an aseptic inflammation caused by pathologically activated pancreatic enzymes and inflammatory mediators produced secondarily by neutrophils and other inflammatory cells and is one of the most difficult diseases to treat. This study aimed to investigate the role of neutrophils in pancreatitis by examining tissue dynamics. METHODS: We created a model of caerulein-induced pancreatitis in 12-week-old male granulocyte colony-stimulating factor knockout mice (G-CSF-KO) and wild-type littermate control mice (six intraperitoneal injections of caerulein [80 µg/kg body weight] at hourly intervals for 2 days). Mice were sacrificed 0, 3, 6, 12, 24, 36, 48, 72, and 168 h after caerulein administration and examined histologically. RESULTS: The survival rate after one week of caerulein administration was 100 % in the control mice, whereas it was significantly lower (10 %) in the G-CSF-KO mice. Histological examination revealed significant hemorrhage and inflammatory cell migration in the G-CSF-KO mice, indicating prolonged inflammation. CONCLUSION: Prolonged inflammation was observed in the G-CSF-KO mice. Tissue cleanup by neutrophils during the acute phase of inflammation may influence healing through the chronic phase.


Assuntos
Pancreatite , Camundongos , Masculino , Animais , Pancreatite/induzido quimicamente , Pancreatite/patologia , Neutrófilos , Ceruletídeo/toxicidade , Doença Aguda , Inflamação/patologia , Camundongos Knockout , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Pâncreas/patologia , Modelos Animais de Doenças
6.
J Physiol Pharmacol ; 74(4)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37865961

RESUMO

Acute pancreatitis (AP) is the most common gastrointestinal disease leading to hospitalizations and unexpected deaths. The development of AP leads to damage of the pancreatic microcirculation with a cascade of subsequent events resulting, among others, in coagulopathy. Previous research showed that anticoagulants can be important therapeutic agents. Heparin and acenocoumarol can alleviate the course of AP, as well as accelerate healing and post-inflammatory regeneration of the pancreas. The aim of this study was to determine whether warfarin, a drug with more stable effects than acenocoumarol, affects the healing and regeneration of the pancreas in the cerulein-induced AP. AP was evoked in Wistar male rats by intraperitoneal administration of cerulein. The first dose of warfarin (45, 90 or 180 µg/kg) was administered 24 hours after the first dose of cerulein and the doses of warfarin were repeated once a day in subsequent 10 days. The severity of AP was assessed immediately after the last dose of cerulein, as well as at days 1, 2, 3, 5, and 10 after AP induction. Treatment with warfarin dose-dependently increased international normalized ratio (INR) and attenuated the severity of pancreatitis in histological examination and accelerated pancreatic recovery. These effects were accompanied with a faster reduction in the AP-evoked increase in serum activity of amylase and lipase, the serum concentration of pro-inflammatory interleukin-1ß, and the plasma level of D-Dimer. In addition, treatment with warfarin decreased pancreatic weight (an index of pancreatic edema) and improved pancreatic blood flow in rats with AP. The therapeutic effect was particularly pronounced after the administration of warfarin at a dose of 90 µg/kg. We conclude that treatment with warfarin accelerated regeneration of the pancreas and recovery in the course of cerulein-induced mild-edematous acute pancreatitis.


Assuntos
Pancreatite , Ratos , Masculino , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Varfarina/farmacologia , Varfarina/uso terapêutico , Ceruletídeo/toxicidade , Ratos Wistar , Acenocumarol/uso terapêutico , Doença Aguda , Pâncreas/patologia
7.
Dig Dis Sci ; 68(9): 3644-3659, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526905

RESUMO

BACKGROUND: Nintedanib (Ninte) has been approved for the treatment of pulmonary fibrosis, and whether it can ameliorate chronic pancreatitis (CP) is unknown. AIMS: This study was conducted to investigate the effect and molecular mechanism of Ninte on pancreatic fibrosis and inflammation in vivo and in vitro. METHODS: The caerulein-induced CP model of murine was applied, and Ninte was orally administered. Pathological changes in pancreas were evaluated using hematoxylin & eosin, Sirius Red, Masson's trichrome, and anti-Ki-67 staining. For in vitro studies, the effects of Ninte on cell viability, apoptosis, and migration of pancreatic stellate cells (PSCs) were determined by CCK-8, flow cytometry, and wound healing assays, respectively. The potential molecular mechanisms of the effects of Ninte on PSCs were analyzed by RNA-Seq and verified at the gene expression and protein activity levels by qRT-PCR and Western Blot. RESULTS: Ninte significantly alleviated the weight loss in mice with caerulein-induced CP and simultaneously attenuated the pancreatic damage, as evidenced by reduced acinar atrophy, collagen deposition, infiltration of inflammatory cells, and inhibited cell proliferation/regeneration. Besides, Ninte markedly suppressed the transcription of fibrogenic and proinflammatory genes in pancreatic tissues. Further in vitro studies showed that Ninte significantly inhibited the transcription and protein expression of genes corresponding to fibrogenesis and proliferation in PSCs. The results of RNA-Seq analysis and subsequent verification assays indicated that Ninte inhibited the activation and proliferation of PSCs via the JAK/STAT3 and ERK1/2 pathways. CONCLUSIONS: These findings indicate that Ninte may be a potential anti-inflammatory and anti-fibrotic therapeutic agent for CP.


Assuntos
Sistema de Sinalização das MAP Quinases , Pancreatite Crônica , Camundongos , Animais , Células Estreladas do Pâncreas/patologia , Ceruletídeo/toxicidade , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pâncreas/patologia , Fibrose
8.
Genomics ; 115(5): 110693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532089

RESUMO

OBJECTIVE: This research discussed the specific mechanism by which PIAS1 affects acute pancreatitis (AP). METHODS: PIAS1, Foxa2, and FTO expression was assessed in Cerulein-induced AR42J cells and mice. Loss- and gain-of-function assays and Cerulein induction were conducted in AR42J cells and mice for analysis. The relationship among PIAS1, Foxa2, and FTO was tested. Cell experiments run in triplicate, and eight mice for each animal group. RESULTS: Cerulein-induced AP cells and mice had low PIAS1 and Foxa2 and high FTO. Cerulein induced pancreatic injury in mice and inflammation and oxidative stress in pancreatic tissues, which could be reversed by PIAS1 or Foxa2 upregulation or FTO downregulation. PIAS1 elevated SUMO modification of Foxa2 to repress FTO transcription. FTO upregulation neutralized the ameliorative effects of PIAS1 or Foxa2 upregulation on Cerulein-induced AR42J cell injury, inflammation, and oxidative stress. CONCLUSION: PIAS1 upregulation diminished FTO transcription by increasing Foxa2 SUMO modification, thereby ameliorating Cerulein-induced AP.


Assuntos
Pancreatite , Animais , Camundongos , Doença Aguda , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Ceruletídeo/metabolismo , Ceruletídeo/toxicidade , Regulação para Baixo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Inflamação , Pancreatite/induzido quimicamente , Pancreatite/genética , Sumoilação , Regulação para Cima
9.
Acta Pharmacol Sin ; 44(12): 2445-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580492

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.


Assuntos
Ceruletídeo , Pancreatite , Masculino , Camundongos , Animais , Ratos , Humanos , Doença Aguda , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Pancreatite/induzido quimicamente , Autofagia/fisiologia , Proteínas SNARE/metabolismo , Edema
10.
Biomolecules ; 13(6)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371528

RESUMO

Acute pancreatitis (AP) is a severe disease with high morbidity and mortality in which inflammation and coagulation play crucial roles. The development of inflammation leads to vascular injury, endothelium and leukocytes stimulation, and an increased level of tissue factor, which results in the activation of the coagulation process. For this reason, anticoagulants may be considered as a therapeutic option in AP. Previous studies have shown that pretreatment with heparin, low-molecular-weight heparin (LMWH), or acenocoumarol inhibits the development of AP. The aim of the present study was to check if pretreatment with warfarin affects the development of edematous pancreatitis evoked by cerulein. Warfarin (90, 180, or 270 µg/kg/dose) or saline were administered intragastrically once a day for 7 days consecutively before the induction of AP. AP was evoked by the intraperitoneal administration of cerulein. The pre-administration of warfarin at doses of 90 or 180 µg/kg/dose reduced the histological signs of pancreatic damage in animals with the induction of AP. Additionally, other parameters of AP, such as an increase in the serum activity of lipase and amylase, the plasma concentration of D-dimer, and interleukin-1ß, were decreased. In addition, pretreatment with warfarin administered at doses of 90 or 180 µg/kg/dose reversed the limitation of pancreatic blood flow evoked by AP development. Warfarin administered at a dose of 270 µg/kg/dose did not exhibit a preventive effect in cerulein-induced AP. Conclusion: Pretreatment with low doses of warfarin inhibits the development of AP evoked by the intraperitoneal administration of cerulein.


Assuntos
Pancreatite , Ratos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Varfarina/farmacologia , Varfarina/uso terapêutico , Ceruletídeo/toxicidade , Ceruletídeo/uso terapêutico , Ratos Wistar , Heparina de Baixo Peso Molecular/efeitos adversos , Doença Aguda , Inflamação
11.
Immun Inflamm Dis ; 11(5): e831, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37249288

RESUMO

BACKGROUND: Acute pancreatitis (AP) is an inflammatory process unexpectedly occurring in the pancreas, imposing a substantial burden on healthcare systems. Herein, we aimed to clarify the mechanism of action of phospholipase D2 (PLD2) in cerulein-treated AR42J cells, affording valuable insights into the treatment of AP. METHODS: The levels of PLD2, miR-5132-5p, inflammatory factors (interleukin [IL]-10, IL-6, and tumor necrosis factor-α), caspase-3 activity, and apoptosis-related proteins (Bax and Bcl-2) in cerulein-treated AR42J cells were detected using reverse transcription-quantitative polymerase chain, caspase-3 activity, and Western blot analysis. Protein levels of nuclear Factor erythroid 2-Related Factor 2 (Nrf2) and nuclear factor-k-gene binding (NF-κB) were detected by Western blot analysis. TargetScan predicted upstream microRNAs (miRNAs) of PLD2, and the interaction between miR-5132-5p and PLD2 was verified using a luciferase assay. RESULTS: In cerulein-treated AR42J cells, PLD2 levels were downregulated, while miR-5132-5p expression was upregulated. Overexpression of PLD2 attenuated the cerulein-mediated facilitatory effect on inflammation and apoptosis in AR42J cells by regulating the Nrf2/NFκB pathway. Luciferase reporter analysis revealed that miR-5132-5p targeted PLD2, and miR-5132-5p negatively regulated PLD2. Upregulation of miR-5132-5p expression exacerbated inflammation and apoptosis and reversed the protective effect of PLD2 overexpression on AP. CONCLUSION: PLD2 targeted by miR-5132-5p can attenuate cerulein-induced AP in AR42J cells via the Nrf2/NFκB pathway, providing therapeutic targets for patients with AP.


Assuntos
MicroRNAs , Pancreatite , Doença Aguda , Caspase 3 , Ceruletídeo/toxicidade , Inflamação , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/genética , Animais , Ratos
12.
Immun Inflamm Dis ; 11(4): e819, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102653

RESUMO

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disease with high mortality. Previous study has suggested that circular RNAs are dysregulated and involved in the regulation of inflammatory responses in AP. This study aimed to investigate the function and regulatory mechanism underlying mmu_circ_0000037 in caerulein-induced AP cellular model. METHODS: Caerulein-treated MPC-83 cells were used as an in vitro cellular model for AP. The expression levels of mmu_circ_0000037, microRNA (miR)-92a-3p, and protein inhibitor of activated STAT1 (Pias1) were detected by quantitative real-time polymerase chain reaction. Cell viability, amylase activity, apoptosis, and inflammatory response were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Amylase Assay Kit, flow cytometry, and enzyme-linked immunosorbent assays. The protein level was quantified by western blot analysis. The target interaction between miR-92a-3p and mmu_circ_0000037 or Pias1 were predicted by StarbaseV3.0 and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: Mmu_circ_0000037 and Pias1 levels were decreased, whereas miR-92a-3p expression was elevated in caerulein-induced MPC-83 cells. Overexpression of mmu_circ_0000037 protected MPC-83 cells from caerulein-induced the decrease of cell viability, as well as the promotion of amylase activity, apoptosis and inflammation. MiR-92a-3p was targeted by mmu_circ_0000037, and miR-92a-3p overexpression rescued the effect of mmu_circ_0000037 on caerulein-induced MPC-83 cell injury. Pias1 was confirmed as a target of miR-92a-3p and mmu_circ_0000037 regulated the expression of Pias1 by sponging miR-92a-3p. CONCLUSION: Mmu_circ_0000037 relieves caerulein-induced inflammatory injury in MPC-83 cells by targeting miR-92a-3p/Pias1 axis, providing a theoretical basis for the treatment of AP.


Assuntos
MicroRNAs , Pancreatite , Proteínas Inibidoras de STAT Ativados , RNA Circular , Humanos , Doença Aguda , Amilases , Ceruletídeo/toxicidade , MicroRNAs/genética , Pancreatite/induzido quimicamente , Pancreatite/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , RNA Circular/genética
13.
FASEB J ; 37(1): e22684, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468677

RESUMO

Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.


Assuntos
5'-Nucleotidase , Pancreatite Crônica , Camundongos , Animais , 5'-Nucleotidase/genética , Ceruletídeo/toxicidade , Adenosina , Neutrófilos , Doença Aguda , Camundongos Endogâmicos C57BL , Metaplasia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Inflamação
14.
J Nutr Biochem ; 113: 109229, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36435290

RESUMO

Acute pancreatitis (AP) is an acute inflammatory abdominal disease frequently associated with intestinal barrier dysfunction. Biochanin A (BCA), a dietary isoflavone, has gained increasing interest with its pronounced biological activities. However, its potential beneficial effects on AP have not been demonstrated. Herein, we explored the protective effect of BCA on caerulein-induced AP in BALB/c mice and underlying mechanisms. BCA alleviated AP as evidenced by reduced serum amylase and lipase levels, pancreatic edema, pancreatic myeloperoxidase activity, and improved pancreatic morphology. Amelioration of pancreatic damage by BCA was associated with reduced levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and monocyte chemotactic protein-1 in both pancreas and colon. Moreover, BCA attenuated AP-associated barrier damage by upregulating the expression of tight junction proteins zonulin occluding (ZO)-1, ZO-2, occludin, and claudin-1. Concomitantly, the translocation of pathogenic bacteria Escherichia coli (E. coli) to pancreas was reduced by BCA. More importantly, reduction of E. coli dissemination by BCA inhibited the TLR4-MAPK/NF-κB signaling and NLRP3 inflammasome activation, thereby protecting against AP and related intestinal injury. Consistently, TLR4 inhibition by TAK-242 pre-treatment counteracted the anti-inflammatory effects of BCA in acinar cells. Taken together, our study extends beneficial effects of BCA to AP prevention, and dietary BCA supplement may be a potential strategy to safeguard AP.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Ceruletídeo/toxicidade , Receptor 4 Toll-Like , Doença Aguda , Escherichia coli , NF-kappa B/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36043738

RESUMO

AIMS: Develop a novel murine models of malignant pancreatitis. BACKGROUND: Although patients with chronic pancreatitis are at a greater risk of developing pancreatic cancer, there is no definitive mouse model that currently develops chronic pancreatitis-induced pancreatic cancer. OBJECTIVE: Characterization of eosinophilic inflammation-mediated malignant pancreatitis in novel murine model. METHODS: We developed a murine model of chronic eosinophilic inflammation associated with pancreatitis that also shows characteristic features of pancreatic malignancy. The mouse received cerulein and azoxymethane via intraperitoneal administration developed pathological malignant phenotype, as well as concomitant lung inflammation. RESULTS: We discovered pathological alterations in the pancreas that were associated with chronic pancreatitis, including a buildup of eosinophilic inflammation. Eosinophil degranulation was reported nearby in the pancreas tissue sections that show acinar-to-ductal metaplasia and acinar cell atrophy, both of which are characteristic of pancreatic malignancies. Additionally, we also observed the formation of PanIN lesions after three initial doses of AOM and eight weeks of cerulein with the AOM treatment regimen. We discovered that persistent pancreatic eosinophilic inflammation linked with a pancreatic malignant phenotype contributes to pulmonary damage. The RNA seq analysis also confirmed the induction of fibro-inflammatory and oncogenic proteins in pancreas and lung tissues. Further, in the current manuscript, we now report the stepwise kinetically time-dependent cellular inflammation, genes and proteins involved in the development of pancreatitis malignancy and associated acute lung injury by analyzing the mice of 3 AOM with 3, 8, and 12 weeks of the cerulein challenged protocol regime. CONCLUSION: We first show that sustained long-term eosinophilic inflammation induces time-dependent proinflammatory, profibrotic and malignancy-associated genes that promote pancreatic malignancy and acute lung injury in mice.


Assuntos
Neoplasias Pancreáticas , Pancreatite Crônica , Camundongos , Animais , Ceruletídeo/toxicidade , Ceruletídeo/uso terapêutico , Modelos Animais de Doenças , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/metabolismo , Inflamação/induzido quimicamente , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas
16.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215509

RESUMO

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Assuntos
Nitrosaminas , Pancreatite , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Doença Aguda , Animais , Carcinógenos , Ceruletídeo/toxicidade , Citocinas , Desintegrinas , Endopeptidases , Fibrose , Interleucina-6/genética , Interleucina-6/metabolismo , Cetonas , Camundongos , Nicotina , Pancreatite/tratamento farmacológico , Pancreatite/genética , Peptídeo Hidrolases , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell Death Dis ; 13(10): 893, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273194

RESUMO

Noninflammatory clearance of dying cells by professional phagocytes, termed efferocytosis, is fundamental in both homeostasis and inflammatory fibrosis disease but has not been confirmed to occur in chronic pancreatitis (CP). Here, we investigated whether efferocytosis constitutes a novel regulatory target in CP and its mechanisms. PRSS1 transgenic (PRSS1Tg) mice were treated with caerulein to mimic CP development. Phospholipid metabolite profiling and epigenetic assays were performed with PRSS1Tg CP models. The potential functions of Atp8b1 in CP model were clarified using Atp8b1-overexpressing adeno-associated virus, immunofluorescence, enzyme-linked immunosorbent assay(ELISA), and lipid metabolomic approaches. ATAC-seq combined with RNA-seq was then used to identify transcription factors binding to the Atp8b1 promoter, and ChIP-qPCR and luciferase assays were used to confirm that the identified transcription factor bound to the Atp8b1 promoter, and to identify the specific binding site. Flow cytometry was performed to analyze the proportion of pancreatic macrophages. Decreased efferocytosis with aggravated inflammation was identified in CP. The lysophosphatidylcholine (LPC) pathway was the most obviously dysregulated phospholipid pathway, and LPC and Atp8b1 expression gradually decreased during CP development. H3K27me3 ChIP-seq showed that increased Atp8b1 promoter methylation led to transcriptional inhibition. Atp8b1 complementation substantially increased the LPC concentration and improved CP outcomes. Bhlha15 was identified as a transcription factor that binds to the Atp8b1 promoter and regulates phospholipid metabolism. Our study indicates that the acinar Atp8b1/LPC pathway acts as an important "find-me" signal for macrophages and plays a protective role in CP, with Atp8b1 transcription promoted by the acinar cell-specific transcription factor Bhlha15. Bhlha15, Atp8b1, and LPC could be clinically translated into valuable therapeutic targets to overcome the limitations of current CP therapies.


Assuntos
Adenosina Trifosfatases , Lisofosfatidilcolinas , Macrófagos , Pancreatite Crônica , Animais , Camundongos , Células Acinares/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ceruletídeo/toxicidade , Histonas/metabolismo , Inflamação/metabolismo , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Macrófagos/metabolismo , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fatores de Transcrição/metabolismo
18.
Comput Math Methods Med ; 2022: 1747470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276993

RESUMO

Acute pancreatitis (AP) is mainly caused by acinar cells releasing various inflammatory factors, causing inflammatory storms and leading to severe pancreatitis. Detection methods and treatment targets for pancreatitis are lacking, raising the urgency of identifying diagnostic markers and therapeutic targets for AP. MicroRNAs (miRNAs) have recently been identified as molecular markers for various biological processes such as tumors, immunity, and metabolism, and the involvement of miRNAs in inflammatory responses has been increasingly studied. To explore the role of miRNAs in AP is the primary objective of this study. By using qPCR on our cerulein-induced pancreatitis cell model, it is worth noting that the change of miR-146a-5p expression in inflammation-related miRNAs in AP was predominant. Next, ELISA, CCK8, and flow cytometry were used to inspect the impact of miR-146a-5p on pancreatitis. BiBiServ bioinformatics anticipated binding ability of miR-146a-5p and 3'-untranslated region (3'UTR) of TNF receptor-associated factor 6 (TRAF6), and the dual-luciferase assay verified the combination of the two. TRAF6 knockdown verified the effect of TRAF6 on the progression of pancreatitis. Finally, rescue experiments verified the capability of miR-146a-5p and TRAF6 interaction on the Toll-like receptor 9 (TLR9)/NOD-like receptor protein 3 (NLRP3) signaling pathway and cell function. The expression of miR-146a-5p decreased in cerulein-induced AR42J pancreatic acinar cells. Functional experiments verified that miR-146a-5p facilitated the proliferation of AR42J pancreatic acinar cells and inhibited their apoptosis. Bioinformatic predictions and dual-luciferase experiments verified the actual binding efficiency between miR-146a-5p and 3'UTR of TRAF6. Our study confirmed that knockdown of TRAF6 restrained the progression of pancreatitis, and knockdown of TRAF6 rescued pancreatitis caused by miR-146a-5p downregulation by the TLR9/NLRP3 signaling pathway. Therefore, downregulation of miR-146a-5p in the induced pancreatitis cell model promotes the progression of pancreatitis via the TLR9/TRAF6/NLRP3 signaling pathway. There is potential for miR-146a-5p to serve as a diagnostic marker and therapeutic nucleic acid drug for AP.


Assuntos
MicroRNAs , Pancreatite , Ratos , Animais , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Regulação para Baixo , Receptor Toll-Like 9/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ceruletídeo/toxicidade , Ceruletídeo/metabolismo , Regiões 3' não Traduzidas , Doença Aguda , Pancreatite/induzido quimicamente , Pancreatite/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo
19.
Front Immunol ; 13: 869207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911777

RESUMO

Acute pancreatitis (AP) is a common cause of a clinically acute abdomen. Crosstalk between acinar cells and leukocytes (especially macrophages) plays an important role in the development of AP. However, the mechanism mediating the interaction between acinar cells and macrophages is still unclear. This study was performed to explore the role of acinar cell extracellular vesicles (EVs) in the crosstalk between acinar cells and macrophages involved in the pathogenesis of AP. EVs derived from caerulein-treated acinar cells induced macrophage infiltration and aggravated pancreatitis in an AP rat model. Further research showed that acinar cell-derived EV miR-183-5p led to M1 macrophage polarization by downregulating forkhead box protein O1 (FoxO1), and a dual-luciferase reporter assay confirmed that FoxO1 was directly inhibited by miR-183-5p. In addition, acinar cell-derived EV miR-183-5p reduced macrophage phagocytosis. Acinar cell-derived EV miR-183-5p promoted the pancreatic infiltration of M1 macrophages and increased local and systemic damage in vivo. Subsequently, miR-183-5p overexpression in macrophages induced acinar cell damage and trypsin activation, thus further exacerbating the disease. In clinical samples, elevated miR-183-5p levels were detected in serum EVs and positively correlated with the severity of AP. EV miR-183-5p might play an important role in the development of AP by facilitating M1 macrophage polarization, providing a new insight into the diagnosis and targeted management of pancreatitis. Graphical abstract of the present study. In our caerulein-induced AP model, miR-183-5p was upregulated in injured acinar cells and transported by EVs to macrophages. miR-183-5p could induce M1 macrophage polarization through downregulation of FoxO1 and the release of inflammatory cytokines, which could aggravate AP-related injuries. Therefore, a vicious cycle might exist between injured ACs and M1 macrophage polarization, which is fulfilled by EV-transported miR-183-5p, leading to sustainable and progressive AP-related injuries.


Assuntos
Vesículas Extracelulares , MicroRNAs , Pancreatite , Células Acinares/metabolismo , Doença Aguda , Animais , Ceruletídeo/toxicidade , Regulação para Baixo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Ratos
20.
Pancreatology ; 22(7): 880-886, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36038449

RESUMO

BACKGROUND: Premature intracellular trypsinogen activation has long been considered a key initiator of acute pancreatitis (AP). Cathepsin B (CTSB) activates trypsinogen, while cathepsin L (CTSL) inactivates trypsin(ogen), and both proteins play a role in the onset of AP. METHODS: AP was induced by 7 hourly intraperitoneal injections of cerulein (50 µg/kg) in wild-type and pancreas-specific conditional Ctsb knockout (CtsbΔpan), Ctsl knockout (CtslΔpan), and Ctsb;Ctsl double-knockout (CtsbΔpan;CtslΔpan) mice. Pancreatic samples were collected and analyzed by histology, immunohistochemistry, real-time PCR, and immunoblots. Trypsin activity was measured in pancreatic homogenates. Peripheral blood was collected, and serum amylase activity was measured. RESULTS: Double deletion of Ctsb and Cstl did not affect pancreatic development or mouse growth. After 7 times cerulein injections, double Ctsb and Ctsl deficiency in mouse pancreases increased trypsin activity to the same extent as that in Ctsl-deficient mice, while Ctsb deficiency decreased trypsin activity but did not affect the severity of AP. CtsbΔpan;CtslΔpan mice had comparable serum amylase activity and histopathological changes and displayed similar levels of proinflammatory cytokines, apoptosis, and autophagy activity compared with wild-type, CtsbΔpan, and CtslΔpan mice. CONCLUSION: Double deletion of Ctsb and Ctsl in the mouse pancreas altered intrapancreatic trypsin activity but did not affect disease severity and inflammatory response after cerulein-induced AP.


Assuntos
Catepsina B , Pancreatite , Animais , Camundongos , Doença Aguda , Amilases , Catepsina B/genética , Catepsina B/metabolismo , Ceruletídeo/toxicidade , Camundongos Knockout , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Tripsina/genética , Tripsinogênio/genética , Tripsinogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...