Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 943
Filtrar
1.
PLoS One ; 19(5): e0301041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701088

RESUMO

OBJECTIVE: To evaluate the safety and performance of an implantable near-infrared (NIR) spectroscopy sensor for multi-metabolite monitoring of glucose, ketones, lactate, and ethanol. RESEARCH DESIGN AND METHODS: This is an early feasibility study (GLOW, NCT04782934) including 7 participants (4 with type 1 diabetes (T1D), 3 healthy volunteers) in whom the YANG NIR spectroscopy sensor (Indigo) was implanted for 28 days. Metabolic challenges were used to vary glucose levels (40-400 mg/dL, 2.2-22.2 mmol/L) and/or induce increases in ketones (ketone drink, up to 3.5 mM), lactate (exercise bike, up to 13 mM) and ethanol (4-8 alcoholic beverages, 40-80g). NIR spectra for glucose, ketones, lactate, and ethanol levels analyzed with partial least squares regression were compared with blood values for glucose (Biosen EKF), ketones and lactate (GlucoMen LX Plus), and breath ethanol levels (ACE II Breathalyzer). The effect of potential confounders on glucose measurements (paracetamol, aspartame, acetylsalicylic acid, ibuprofen, sorbitol, caffeine, fructose, vitamin C) was investigated in T1D participants. RESULTS: The implanted YANG sensor was safe and well tolerated and did not cause any infectious or wound healing complications. Six out 7 sensors remained fully operational over the entire study period. Glucose measurements were sufficiently accurate (overall mean absolute (relative) difference MARD of 7.4%, MAD 8.8 mg/dl) without significant impact of confounders. MAD values were 0.12 mM for ketones, 0.16 mM for lactate, and 0.18 mM for ethanol. CONCLUSIONS: The first implantable multi-biomarker sensor was shown to be well tolerated and produce accurate measurements of glucose, ketones, lactate, and ethanol. TRIAL REGISTRATION: Clinical trial identifier: NCT04782934.


Assuntos
Etanol , Estudos de Viabilidade , Cetonas , Ácido Láctico , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Cetonas/análise , Masculino , Etanol/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Feminino , Ácido Láctico/análise , Ácido Láctico/sangue , Glicemia/análise , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 1/sangue , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Glucose/análise
2.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542894

RESUMO

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Assuntos
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animais , Leite/química , Streptococcus thermophilus/metabolismo , Fermentação , Acetoína/análise , Lactobacillus delbrueckii/metabolismo , Cetonas/análise
3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474610

RESUMO

Milk fat is a premium nutritional health product, yet there is a lack of high-fat dairy products for daily consumption in the current market. This study investigated the influence of different milk fat contents on the physicochemical and textural properties of fermented milk. The research revealed that an increase in milkfat content significantly improved the water-holding capacity, syneresis, color, hardness, springiness, gumminess, and chewiness of fermented milk, while showing minimal changes in pH and total titratable acidity. Response surface analysis indicated that fermented milk with 25% milk fat, 2.5% inoculum, a fermentation time of 16 h, and a fermentation temperature of 30 °C exhibited the highest overall acceptability. Using GC-IMS technology, 36 volatile compounds were identified, with an increase in milk fat content leading to elevated levels of ketone compounds, and 14 compounds were defined as key aroma compounds (ROAV > 1). Electronic nose distinguished samples with different milk fat contents. The results demonstrate that an increase in milk fat content enhances the physicochemical and flavor attributes of fermented milk. This work provides theoretical references for the production and development of high-fat fermented milk.


Assuntos
Espectrometria de Mobilidade Iônica , Leite , Animais , Leite/química , Cromatografia Gasosa-Espectrometria de Massas , Análise Multivariada , Cetonas/análise
4.
mSystems ; 9(1): e0080323, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38064548

RESUMO

Aliphatic carboxylic acids, aldehydes, and ketones play diverse roles in microbial adaptation to their microenvironment, from excretion as toxins to adaptive metabolites for membrane fluidity. However, the spatial distribution of these molecules throughout biofilms and how microbes in these environments exchange these molecules remain elusive for many of these bioactive species due to inefficient molecular imaging strategies. Herein, we apply on-tissue chemical derivatization (OTCD) using 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) on a co-culture of a soil bacterium (Bacillus subtilis NCIB 3610) and fungus (Fusarium sp. DS 682) grown on agar as our model system. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we spatially resolved more than 300 different metabolites containing carbonyl groups within this model system. Various spatial patterns are observable in these species, which indicate possible extracellular or intercellular processes of the metabolites and their up- or downregulation during microbial interaction. The unique chemistry of our approach allowed us to bring additional confidence in accurate carbonyl identification, especially when multiple isomeric candidates were possible, and this provided the ability to generate hypotheses about the potential role of some aliphatic carbonyls in this B. subtilis/Fusarium sp. interaction. The results shown here demonstrate the utility of 4-ABEBA-based OTCD MALDI-MSI in probing interkingdom interactions directly from microbial co-cultures, and these methods will enable future microbial interaction studies with expanded metabolic coverage.IMPORTANCEThe metabolic profiles within microbial biofilms and interkingdom interactions are extremely complex and serve a variety of functions, which include promoting colonization, growth, and survival within competitive and symbiotic environments. However, measuring and differentiating many of these molecules, especially in an in situ fashion, remains a significant analytical challenge. We demonstrate a chemical derivatization strategy that enabled highly sensitive, multiplexed mass spectrometry imaging of over 300 metabolites from a model microbial co-culture. Notably, this approach afforded us to visualize over two dozen classes of ketone-, aldehyde-, and carboxyl-containing molecules, which were previously undetectable from colonies grown on agar. We also demonstrate that this chemical derivatization strategy can enable the discrimination of isobaric and isomeric metabolites without the need for orthogonal separation (e.g., online chromatography or ion mobility). We anticipate that this approach will further enhance our knowledge of metabolic regulation within microbiomes and microbial systems used in bioengineering applications.


Assuntos
Aldeídos , Ácidos Carboxílicos , Ágar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aldeídos/análise , Ácidos Carboxílicos/análise , Cetonas/análise , Interações Microbianas
5.
Environ Pollut ; 343: 123215, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145635

RESUMO

The cooking fumes generated from thermal cooking oils contains various of hazardous components and shows deleterious health effects. The edible oil refining is designed to improve the oil quality and safety. While, there remains unknown about the connections between the characteristics and health risks of the cooking fumes and oils with different refining levels. In this study, the hazardous compounds, including aldehydes, ketones, polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) in the fumes emitted from heated soybean oils with different refining levels were characterized, and their health risks were assessed. Results demonstrated that the concentration range of aldehydes and ketones (from 328.06 ± 24.64 to 796.52 ± 29.67 µg/m3), PAHs (from 4.39 ± 0.19 to 7.86 ± 0.51 µg/m3), and PM (from 0.36 ± 0.14 to 5.08 ± 0.15 mg/m3) varied among soybean oil with different refining levels, respectively. The neutralized oil showed the highest concentration of aldehydes and ketones, whereas the refined oil showed the lowest. The highest concentration levels of PAHs and PM were observed in fumes emitted from crude oil. A highly significant (p < 0.001) positive correlation between the acid value of cooking oil and the concentrations of PM was found, suggesting that removing free fatty acids is critical for mitigating PM concentration in cooking fumes. Additionally, the incremental lifetime cancer risk (ILCR) values of PAHs and aldehydes were 5.60 × 10-4 to 8.66 × 10-5 and 5.60 × 10-4 to 8.66 × 10-5, respectively, which were substantially higher than the acceptable levels (1.0 × 10-6) established by US EPA. The present study quantifies the impact of edible oil refining on hazardous compound emissions and provides a theoretical basis for controlling the health risks of cooking fumes via precise edible oil processing.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Óleo de Soja , Óleo de Soja/análise , Óleos de Plantas , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado , Gases/análise , Medição de Risco , Culinária/métodos , Aldeídos/análise , Cetonas/análise
6.
Food Res Int ; 173(Pt 2): 113461, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803791

RESUMO

The increasing demand for tea consumption calls for the development of more products with distinct characteristics. The sensory quality of tencha is significantly determined by innate differences among tea cultivars. However, the correlations between the chemical composition and sensory traits of tencha are still unclear. To enhance the understanding of the flavor formation mechanism in tencha and further to develop new cultivars resources, we investigated non-volatiles and volatile metabolites as well as sensory traits in tencha from different tea cultivars (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1); the relationships between the flavor traits and non-volatiles/volatiles were further evaluated by partial least squares - discriminate analysis (PLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. A total of 64 non-volatiles and 116 volatiles were detected in all samples, among which 71 metabolites were identified as key flavor-chemical contributors involving amino acids, flavonol glycosides, flavones, catechins, ketones, alcohols, hydrocarbons, aldehydes, esters and acids. The levels of taste-related amino acids, flavonol glycosides and gallic acid varied significantly among the tencha samples made from different tea cultivars. All the samples exhibited typical quality characteristics of tencha. The tencha from Camellia sinensis cv. Longjing 43 and Camellia sinensis cv. Baiye 1 (cultivated in the open) exhibited higher levels of amino acids and gallic acid, which were associated with the umami taste and mellow taste of tea infusion. Abundant flavonol glycosides were related to the astringency, while partial tri-glycosides specifically quercetin-3-O-galactoside-rhamnoside-glucoside and total of flavonol galactoside-rhamnoside-glucoside were associated with mellow taste. The floral alcohols were identified as significant contributors to the refreshing aroma traits of tencha. The green, almond-like, acidic and fruity odorants were associated with a green and fresh aroma, while the green, cheesy and waxy odorants such as ketones, esters, acids and hydrocarbons were associated with seaweed-like aroma. This study provides insight into sensory-related chemical profiles of tencha from different tea cultivars, supplying valuable information on flavor and quality identification for tencha.


Assuntos
Camellia sinensis , Camellia sinensis/química , Chá/química , Quimiometria , Flavonóis/análise , Aminoácidos/metabolismo , Glicosídeos/análise , Ácidos , Álcoois/análise , Ácido Gálico/análise , Glucosídeos/metabolismo , Cetonas/análise
7.
J Dairy Sci ; 106(12): 9532-9551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678778

RESUMO

Study aims were to investigate associations of hyperketolactia (HYKL) status of Holstein dairy cows between 6 and 60 d in milk (DIM), defined by milk acetone (mACE) and ß-hydroxybutyrate (mBHB) content, with daily milk yield and composition. Milk samples (∼5.0 million) were collected over a 5-yr period (2014-2019) within the milk recording system in Poland. Concentrations of mACE and mBHB determined by Fourier-transform infrared spectroscopy were used to categorize samples into 4 ketolactia groups. Based on threshold values of ≥0.15 mmol/L mACE and ≥0.10 mmol/L mBHB, ketolactia groups were normoketolactia (NKL; mACE <0.15 mmol/L and mBHB <0.10 mmol/L), BHB hyperketolactia (HYKLBHB; mACE <0.15 mmol/L and mBHB ≥0.10 mmol/L), ACE hyperketolactia (HYKLACE; mACE ≥0.15 mmol/L and mBHB <0.10 mmol/L), and ACE and BHB hyperketolactia (HYKLACEBHB; mACE ≥0.15 mmol/L and mBHB ≥0.10 mmol/L). To investigate ketolactia association with production outcomes, a linear model was developed, including ketolactia group, DIM, parity, their interactions, year-season as fixed effects, and random effects of herd and cow. Among all milk samples, 31.2% were classified as HYKL, and of these, 52.6%, 39.6%, and 7.8% were HYKLACEBHB, HYKLBHB, and HYKLACE, respectively. Ketolactia groups differed for all traits studied in all parities and DIM. Among HYKL groups, lowest milk yield was found in HYKLACEBHB cows, except for 6 to 30 DIM in first- and second-lactation cows. Milk yield of HYKLBHB cows was higher than that of NKL cows until 20 to 30 DIM, and then it was lower than NKL cows. Milk yield of HYKLACE cows was mostly lower than NKL cows. Energy-corrected milk (ECM) yield of HYKLACEBHB cows was higher than that of NKL cows until 30 to 35 DIM for second lactation and third lactation or greater, and in the whole study period for first lactation. The yield of ECM for HYKLBHB cows was mostly higher than that of NKL cows, whereas HYKLACE cows had higher ECM than NKL cows until 15 to 25 DIM and then was lower for the HYKLACE group. Milk composition differed among HYKL groups. Highest milk fat (MF) and lowest milk lactose (ML) contents were observed in HYKLACEBHB cows. Cows in HYKLACEBHB and HYKLBHB groups had higher MF and lower milk protein (MP; except in 6-8 DIM in first lactation) and ML content than NKL cows. Milk fat content was higher in HYKLACE than NKL cows in first lactation and during the first 30 to 40 DIM in older cows. Lactose content was lower in HYKLACE than in NKL cows within 30 to 40 DIM; afterward it was higher in NKL cows. Lower MP content was found in HYKLACE than in NKL cows, except during 6 to 9 DIM for cows in first lactation and third lactation or greater. In conclusion, HYKL is associated with altered milk production in all parities, but a range of these negative relations depends on ketone status addressing both ACE and BHB contents. Further research is needed to ascertain underpinning biochemical defects of HYKL from elevated ACE, alone or in combination with BHB, during early lactation.


Assuntos
Lactação , Lactose , Gravidez , Feminino , Bovinos , Animais , Lactose/análise , Leite/química , Cetonas/análise , Acetona/análise , Ácido 3-Hidroxibutírico/metabolismo
8.
J Dairy Sci ; 106(12): 8538-8550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641261

RESUMO

Flavor sensation is one of the most prevalent characteristics of food industries and an important consumer preference regulator of dairy products. So far, many volatile compounds have been identified, and their molecular mechanisms conferring overall flavor formation have been reported extensively. However, little is known about the critical flavor compound of a specific sensory experience in terms of oxidized off-flavor perception. Therefore, the present study aimed to compare the variation in sensory qualities and volatile flavors in full-fat UHT milk (FFM) and low-fat UHT milk (LFM) samples under different natural storage conditions (0, 4, 18, 25, 30, or 37°C for 15 and 30 d) and determine the main component causing flavor deterioration in the FFM and LFM samples using sensory evaluation, electronic nose, and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). In addition, the Pearson correlation between the volatile flavor components and oxidative off-flavors was analyzed and validated by sensory reconstitution studies. Compared with the LFM samples, the FFM samples showed a higher degree of quality deterioration with increased storage temperature. Methyl ketones of odd carbon chains (i.e., 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone) reached a maximum content in the FFM37 samples over 30 d storage. The combined results of the Pearson correlation and sensory recombination study indicated that 2-heptanone, 2-nonanone, and 2-undecanone conferred off-flavor perception. Overall, the present study results provide potential target components for detecting and developing high-quality dairy products and lay a foundation for specific sensory flavor compound exploration in the food industry.


Assuntos
Leite , Compostos Orgânicos Voláteis , Feminino , Bovinos , Animais , Leite/química , Paladar , Cetonas/análise , Compostos Orgânicos Voláteis/análise
9.
Food Res Int ; 169: 112879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254327

RESUMO

The distinctness in volatile profiles of pigmented rice with various colors (black, green, purple, red, and yellow) after puffing were assayed through gas chromatography-ion migration spectrometry (GC-IMS) to explore their odor characteristics. Fifty-two volatile components were found in those puffed rice, including 27 kinds of aldehydes (accounting for 59.69-64.37 %), 9 ketones (25.55-29.73 %), 5 alcohols (2.45-5.29 %), 4 pyrazines (1.38-2.36 %), 3 ethers (0.81-1.27 %), 2 furans (0.95-1.39 %), 1 pyridine (1.0-1,16 %), and 1 pyrrole (0.59-0.71 %). Aldehydes and ketones were the two chief volatiles in different pigmented puffed rice. These identified volatile flavor components in various pigmented puffed rice obtained by GC-IMS might be well differentiated by principal component and cluster interpretation. Meanwhile, a stable prediction model was fitted via orthogonal partial least squares-discriminant analysis, and 19 differentially volatile components were screened out based on variable importance projection (VIP) above 1. These findings could add certain information for understanding the flavor profiles of pigmented puffed rice and related products.


Assuntos
Oryza , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oryza/química , Quimiometria , Aldeídos/análise , Análise Espectral , Cetonas/análise
10.
Plant Physiol Biochem ; 198: 107679, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37121165

RESUMO

Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.


Assuntos
Allium , Ceras , Ceras/metabolismo , Cebolas/genética , Cebolas/metabolismo , Allium/metabolismo , Álcoois/análise , Álcoois/química , Álcoois/metabolismo , Folhas de Planta/metabolismo , Cetonas/análise , Cetonas/química , Cetonas/metabolismo , Carbono/metabolismo
11.
Talanta ; 257: 124397, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858010

RESUMO

Gas chromatography-ion mobility spectrometry (GC-IMS) has recently gained increasing attention for the analysis of volatile compounds due to its high sensitivity, selectivity, and robust design. Peak shape distortion, including peak tailing or broadening, are well known challenges in chromatographic analysis that result in peak asymmetry and decreased resolution. However, in IMS analysis peak tailing, which is independent on the column separation technique, have also been observed. As high boiling substances, such as monoterpenes, are mainly affected by enlarged peak tailing in GC-IMS, we propose that condensation or adsorption effects within the "cold" IMS cell, which is commonly operated at 45 °C-90 °C, are the root cause. To avoid condensation and to decrease peak tailing, we used a prototypic high temperature ion mobility spectrometry (HTIMS) in this work, which allows an increase of the IMS drift tube temperature up to 180 °C. This HTIMS was coupled to a GC column separation and used to analyse the peak shape of homologues series of ketones, alcohols, aldehydes, as well as high boiling fragrance compounds, such as monoterpenes and phenylpropanoids. While we were able to show that an increased IMS drift tube temperatures correlates well with improved peak shapes, the GC parameters of the HS-GC-HTIMS method, however, were found to have little effect on the peak shapes in IMS spectra. In particular monoterpenes, which display intense peak tailing at lower IMS drift tube temperatures, show significant improvement of the peak shape at higher IMS drift tube temperatures. This leads to the assumption that high boiling substances indeed undergo condensation effects within the IMS cell at low drift tube temperatures. For many separation tasks, such as the separation of the phenylpropanoids eugenol and isoeugenol, comparably low IMS temperatures of 120 °C are already sufficient to achieve a resolution above 1.5. However, the optimal drift tube temperature is dependent on the substance class. While the aspect ratio increases steadily for most monoterpenes, phenylpropanoids and aldehyde monomer peaks investigated, an optimal aspect ratio was found for ketones between 140 °C and 160 °C and alcohols between 120 °C and 140 °C. Lastly, the change of the reduced mobility K0 with the increase of drift tube temperature was analysed. Compounds with similar chemical structure, such as the alcoholic monoterpenes citronellol and geraniol or the phenylpropanoids eugenol and isoeugenol show similar shifts of the K0 value. Substances which differ in their chemical structure, such as the aldehyde monoterpenes citral and cinnamal have substantially different shifts of the K0 value. With a future large substance database, the temperature dependant slope of the K0 value of a substance could be used to identify the substance groups of unknown molecules. Furthermore, substances with the same drift time but different chemical composition could be separable through a change in drift tube temperature.


Assuntos
Cosméticos , Óleos Voláteis , Eugenol/análise , Temperatura , Cromatografia Gasosa-Espectrometria de Massas/métodos , Alérgenos/análise , Odorantes/análise , Cosméticos/química , Monoterpenos/análise , Álcoois/análise , Aldeídos/análise , Cetonas/análise
12.
Environ Pollut ; 325: 121448, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931489

RESUMO

Aldehydes and ketones in urban air continue to receive regulatory and scientific attention for their environmental prevalence and potential health hazard. However, current knowledge of the health risks and losses caused by these pollutants in food waste (FW) treatment processes is still limited, especially under long-term exposure. Here, we presented the first comprehensive assessment of chronic exposure to 21 aldehydes and ketones in urban FW-air environments (e.g., storage site, mechanical dewatering, and composting) by coupling substantial measured data (383 samples) with Monte Carlo-based probabilistic health risk and impact assessment models. The results showed that acetaldehyde, acetone, 2-butanone and cyclohexanone were consistently the predominant pollutants, although the significant differences in pollution profiles across treatment sites and seasons (Adonis test, P < 0.001). According to the risk assessment results, the estimated cancer risk (CR; mean range: 1.6 × 10-5-1.12 × 10-4) and non-cancer risk (NCR; mean range: 2.98-22.7) triggered by aldehydes and ketones were both unacceptable in most cases (CR: 37.8%-99.3%; NCR: 54.2%-99.8%), and even reached the limit of concern to CR (1 × 10-4) in some exposure scenarios (6.18%-16.9%). Application of DALYs (disability adjusted life years) as a metric for predicting the damage suggested that exposure of workers to aldehydes and ketones over 20 years of working in FW-air environments could result in 0.02-0.14 DALYs per person. Acetaldehyde was the most harmful constituent of all targeted pollutants, which contributed to the vast majority of health risks (>88%) and losses (>90%). This study highlights aldehydes and ketones in FW treatments may be the critical pollutants to pose inhalation risks.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Eliminação de Resíduos , Humanos , Aldeídos/análise , Exposição por Inalação/análise , Poluentes Atmosféricos/análise , Cetonas/análise , Monitoramento Ambiental , Alimentos , China/epidemiologia , Acetaldeído
13.
J Chromatogr Sci ; 61(4): 303-311, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36892165

RESUMO

Headspace gas chromatography-ion mobility spectrometric (HS-GC-IMS) fingerprint of volatile organic compounds (VOCs) in Lonicerae japonicae flos (LJF, Jinyinhua in Chinese) was developed. This method, combined with chemometrics analysis, was explored in the identification of authentic LJF. Seventy VOCs were identified from LJF, including aldehydes, ketones, esters, etc. The developed volatile-compound fingerprint based on HS-GC-IMS coupled with PCA analysis can successfully discriminate LJF from its adulterant: Lonicerae japonicae(LJ, called Shanyinhua in China) and can equally discriminate the LJF samples from different geographical origins of China. Total of four (compound 120, compound 184, 2-heptanone and 2-heptanone#2) and nine VOCs (styrene, compound 41, 3z-hexenol, methylpyrazine, hexanal#2, compound 78, compound 110, compound 124 and compound 180) were exploited, which might serve as the chemical markers for the difference of LJF, LJ and LJF from different regions of China. The result showed that the fingerprint based on HS-GC-IMS combined with PCA exhibited distinct advantages, such as rapid, intuitive and powerful selectivity, which demonstrated great application potential in the authentic identification of LJF.


Assuntos
Lonicera , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Quimiometria , Espectrometria de Mobilidade Iônica/métodos , Cetonas/análise , Lonicera/química , Compostos Orgânicos Voláteis/análise
14.
Water Res ; 232: 119484, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746701

RESUMO

Ozonation of drinking water and wastewater is accompanied by the formation of disinfection byproducts (DBPs) such as low molecular weight aldehydes and ketones from the reactions of ozone with dissolved organic matter (DOM). By applying a recently developed non-target workflow, 178 carbonous and nitrogenous carbonyl compounds were detected during bench-scale ozonation of two lake waters and three secondary wastewater effluent samples and full-scale ozonation of secondary treated wastewater effluent. An overlapping subset of carbonyl compounds (20%) was detected in all water types. Moreover, wastewater effluents showed a significantly higher fraction of N-containing carbonyl compounds (30%) compared to lake water (17%). All carbonyl compounds can be classified in 5 main formation trends as a function of increasing specific ozone doses. Formation trends upon ozonation and comparison of results in presence and absence of the •OH radical scavenger DMSO in combination with kinetic and mechanistic information allowed to elucidate potential carbonyl structures. A link between the detected carbonyl compounds and their precursors was established by ozonating six model compounds (phenol, 4-ethylphenol, 4-methoxyphenol, sorbic acid, 3-buten-2-ol and acetylacetone). About one third of the detected carbonous carbonyl compounds detected in real waters was also detected by ozonating model compounds. Evaluation of the non-target analysis data revealed the identity of 15 carbonyl compounds, including hydroxylated aldehydes and ketones (e.g. hydroxyacetone, confidence level (CL) = 1), unsaturated dicarbonyls (e.g. acrolein, CL = 1; 2-butene-1,4-dial, CL = 1; 4-oxobut-2-enoic acid, CL = 2) and also a nitrogen-containing carbonyl compound (2-oxo-propanamide, CL =1). Overall, this study shows the formation of versatile carbonous and nitrogenous carbonyl compounds upon ozonation involving ozone and •OH reactions. Carbonyl compounds with unknown toxicity might be formed, and it could be demonstrated that acrolein, malondialdehyde, methyl glyoxal, 2-butene-1,4-dial and 4-oxo-pentenal are degraded during biological post-treatment.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Nitrogênio/análise , Lagos/análise , Acroleína/análise , Carbono/análise , Aldeídos , Água Potável/análise , Ozônio/química , Cetonas/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos
15.
Anal Chem ; 95(9): 4344-4352, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815760

RESUMO

Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases. This work reports a method of ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) for the analysis of a broad range of carbonyl metabolites in exhaled breath. Carbonyl compounds in the exhaled breath were captured by a fabricated silicon microreactor with a micropillar array coated with 2-(aminooxy)ethyl-N,N,N-trimethylammonium (ATM) triflate. A total of six subgroups consisting of saturated aldehydes and ketones, hydroxy-aldehydes, and hydroxy-ketones, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals were identified in the exhaled breath. The combination of a silicon microreactor for the selective capture of carbonyl compounds with UHPLC-MS analysis may provide a quantitative method for the analysis of carbonyls to identify disease markers in exhaled breath.


Assuntos
Silício , Compostos Orgânicos Voláteis , Cromatografia Líquida de Alta Pressão , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Cetonas/análise , Testes Respiratórios/métodos
16.
Food Chem ; 401: 134126, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088714

RESUMO

To clarify the role of Acetobacter sp. in fermented noni juice, the physiochemical properties, main active ingredients and volatile constituents were comprehensively analyzed. The sugar content and acidity tended to be stable after 12 days of fermentation. Acetobacter sp. had no significant influence on major active ingredients of products. The headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) were performed to describe the characteristic flavor profiles during fermentation. A total of 55 flavor compounds were screened with odour threshold and Kruskal-Wallis p < 0.05. Among them, 14 different biomarkers were selected with Variable Importance in Projection (VIP) greater than 1. The concentrations of ketones and aldehydes increased significantly, mainly contributing to the floral, fruit and green features. The content of hexanoic acid, octanoic acid and butanoic acid as the main source of peculiar odor were significantly reduced, indicating Acetobacter sp. could improve the unpleasant odor of fermented noni juice.


Assuntos
Acetobacter , Morinda , Odorantes , Ácido Butírico , Cromatografia Gasosa-Espectrometria de Massas , Frutas/química , Açúcares/análise , Aldeídos/análise , Cetonas/análise
17.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558197

RESUMO

The aim of this research was to characterize differences and sources of volatile flavor compounds by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and principal component analysis (PCA). Three sweet cherry fruits from different cultivars (cv. Tie, Van, and Lap) and their wines that were produced by the same yeast were detected. The results showed that 27 flavor compounds were identified in cherry fruits, including 10 alcohols, 7 esters, 7 aldehydes, 2 ketones, and 1 organic acid. Twenty-three flavor compounds were identified in cherry wines, including nine esters, eight alcohols, three aldehydes, two organic acids, and one ketone. In cherry fruits, aldehydes, several alcohols, and one ketone were the most prevalent in cv. Tie, and the majority of esters and alcohols in cv. Van. After fermentation, ethanol, butanol, butanal, ethyl propionate, propionaldehyde, 3-hydroxy-2-butanone, and acetic acid increased, whereas 1-hexanol, 3-methyl-3-buten-1-ol, 1-penten-3-ol, ethyl acetate, methyl acetate, (E)-2-hexenal and hexanal decreased. Few differences were detected in the type and content of volatile compounds in cherry wines from cv. Tieton (WT) and cv. Van (WV). Almost all aldehydes are derived from cherry fruits, which cannot be produced during wine-making, and other volatile compounds are almost all produced by saccharomyces cerevisiae. The volatile compounds of cherry wines were determined by row materials and fermentation cultures. Flavor fingerprints were established by HS-GC-IMS and PCA, which provided a theoretical foundation for the evaluation and improvement of flavor quality in cherry wine-making.


Assuntos
Prunus avium , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise de Componente Principal , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Etanol/análise , Cetonas/análise , Ácido Acético/análise , Ésteres/análise , China
18.
J Chromatogr A ; 1685: 463621, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36334568

RESUMO

Three aryl ketones-derived porous organic polymers (ATP-POPM, ATP-POPP and ATP-POPO) were fabricated through the aldol condensation reaction of acetylated triphenylsilane precursor (ATP) with different aromatic aldehydes for the first time. The ATP-POPM exhibited superior extraction capacity toward phenylurea herbicides (PUHs). A sensitive method for the simultaneous determination of six PUHs in water, tea drink and mushroom samples was developed with ATP-POPM as solid phase extraction adsorbent prior to high performance liquid chromatography ultraviolet detection. Under the optimized conditions, the linear response of PUHs was 0.09-80.0 ng mL-1 for water, 0.18-100.0 ng mL-1 for tea drinks and 4.50-200.0 ng g -1 for mushroom samples. The detection limits (S/N=3) of the method were 0.03-0.10 ng mL-1, 0.06-0.18 ng mL-1, 1.50-4.50 ng g -1 for water, tea drink and mushroom, respectively. The method recoveries for spiked samples were in the range of 80.7%-116.0%, with relative standard deviations less than 10.3%. The results proved that the established method was sensitive and suitable to detect PUHs with acceptable accuracy and precision. This work provided a powerful tool to synthesize promising adsorbent by aldol condensation reaction for detecting six PUHs simultaneously in real samples.


Assuntos
Agaricales , Herbicidas , Herbicidas/análise , Polímeros/química , Água/química , Porosidade , Cetonas/análise , Compostos de Fenilureia/análise , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Chá/química , Trifosfato de Adenosina
19.
Microbiol Spectr ; 10(6): e0289422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354338

RESUMO

Flavor characteristics of ripened cheese are established by various bacteria, such as lactic acid bacteria, Actinobacteria, and Proteobacteria, which spontaneously develop during the cheese-manufacturing process. We previously revealed the relationship between bacterial microbiota and flavor components in soft-type ripened cheeses by using a multiomics approach that combined metagenomics and metabolomics; however, we could not establish a causal relationship. This study aimed to substantiate the causal nature of the correlations revealed by the multiomics approach by using cheese-ripening tests with single isolate inoculation. The bacterial diversity and composition in surface mold-ripened cheeses from Japan and France varied, depending on the differences between the milks (pasteurized or raw), cheese positions (core or rind), and manufacturers. Although the volatile compounds did not clearly reflect the distinctive characteristics of the cheese samples, nonstarter lactic acid bacteria, Actinobacteria, and Proteobacteria positively correlated with ketones and sulfur compounds, as evidenced by a Spearman's correlation analysis. Cheese-ripening tests conducted after inoculation with single bacterial strains belonging to the above-mentioned taxa confirmed that these bacteria formed volatile compounds, in agreement with the correlations observed. In particular, various flavor compounds, such as acids, esters, ketones, and sulfur compounds, were detected in cheese inoculated with Pseudoalteromonas sp. TS-4-4 strain. These findings provide important insights into the role of nonstarter bacteria in the development of cheese flavor and into the effectiveness of the multiomics approach in screening for bacteria that can improve the quality of cheese products. IMPORTANCE Our previous study revealed that the existence of various bacteria, such as lactic acid bacteria, Actinobacteria, and Proteobacteria, clearly correlated with the abundance of flavor components, such as volatile compounds, in soft-type ripened cheeses via a multiomics approach that used 16S rRNA gene amplicon sequencing and headspace gas chromatography-mass spectrometry. However, this approach only showed correlations derived from statistical analyses rather than causal relationships. Therefore, in the present study, we performed cheese-ripening tests using nonstarter bacteria to substantiate the correlations revealed by the multiomics approach in soft-type ripened cheese. Our results suggest the capability of nonstarter bacteria, such as Proteobacteria, to impart flavor to cheese and the effectiveness of the multiomics approach in screening for microbial isolates that can improve the quality of cheese. Overall, our research provides new insights into the importance of bacteria in cheese production.


Assuntos
Queijo , Lactobacillales , Queijo/análise , Queijo/microbiologia , RNA Ribossômico 16S , Bactérias/genética , Cetonas/análise , Compostos de Enxofre/análise
20.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234799

RESUMO

The flavor of coffee can be affected by the preparation parameters. In this investigation, the flavor profiles of three coffee brands under three conditions (bean, powder, and brew) were analyzed by gas chromatography-ion mobility spectrometry (GC-IMS) and the electronic nose (E-nose). The flavor results were further studied using multiple factor analysis (MFA). A total of 117 peaks were identified in all coffee samples by GC-IMS, and the principal component analysis (PCA) showed these coffee samples could be grouped and separated. A total of 37 volatile organic compounds (VOCs) were selected as biomarkers to distinguish coffee samples, including 5 aldehydes, 10 ketones, 8 alcohols, 2 acids, 4 esters, 5 furans, and 3 other compounds. The comparison between E-nose and GC-IMS data using partial least squares regression (PLSR) and MFA showed GC-IMS could present very close sample spaces. Compared with E-nose, GC-IMS could not only be used to classify coffee samples in a very short time but also provide VOC bio-markers to discriminate coffee samples.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Aldeídos/análise , Café/química , Furanos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Cetonas/análise , Odorantes/análise , Pós , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...