Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.312
Filtrar
1.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667271

RESUMO

Even with the best infection control protocols in place, the risk of a hospital-acquired infection of the surface of an implanted device remains significant. A bacterial biofilm can form and has the potential to escape the host immune system and develop resistance to conventional antibiotics, ultimately causing the implant to fail, seriously impacting patient well-being. Here, we demonstrate a 4 log reduction in the infection rate by the common pathogen S. aureus of 3D-printed polyaryl ether ketone (PAEK) polymeric surfaces by covalently binding the antimicrobial peptide Mel4 to the surface using plasma immersion ion implantation (PIII) treatment. The surfaces with added texture created by 3D-printed processes such as fused deposition-modelled polyether ether ketone (PEEK) and selective laser-sintered polyether ketone (PEK) can be equally well protected as conventionally manufactured materials. Unbound Mel4 in solution at relevant concentrations is non-cytotoxic to osteoblastic cell line Saos-2. Mel4 in combination with PIII aids Saos-2 cells to attach to the surface, increasing the adhesion by 88% compared to untreated materials without Mel4. A reduction in mineralisation on the Mel4-containing surfaces relative to surfaces without peptide was found, attributed to the acellular portion of mineral deposition.


Assuntos
Peptídeos Antimicrobianos , Benzofenonas , Polímeros , Impressão Tridimensional , Próteses e Implantes , Staphylococcus aureus , Humanos , Staphylococcus aureus/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Próteses e Implantes/efeitos adversos , Polímeros/química , Polímeros/farmacologia , Biofilmes/efeitos dos fármacos , Cetonas/química , Cetonas/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propriedades de Superfície , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Ortopedia
2.
J Med Chem ; 67(9): 7146-7157, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38636481

RESUMO

Previously, we demonstrated that linear peptide epoxyketones targeting the immunoproteasome (iP) could ameliorate cognitive deficits in mouse models of Alzheimer's disease (AD) independently of amyloid deposition. We also reported the first iP-targeting macrocyclic peptide epoxyketones, which exhibit improved metabolic stability compared with their linear counterparts. Here, we prepared additional macrocyclic peptide epoxyketones and compared them with existing macrocyclic iP inhibitors by assessing Caco2 cell-based permeability and microsomal stability, providing the four best macrocyclic iP inhibitors. We then evaluated the four compounds using the Ames test and the potency assays in BV2 cells, selecting compound 5 as our AD drug lead. When 5 was administered intravenously (40 mg/kg) or orally (150 mg/kg) into healthy BALB/c mice, we observed considerable iP inhibition in the mouse brain, indicating good blood-brain barrier permeability and target engagement. Combined results suggest that 5 is a promising AD drug lead that may need further investigation.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Encéfalo , Camundongos Endogâmicos BALB C , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Barreira Hematoencefálica/metabolismo , Camundongos , Células CACO-2 , Encéfalo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Permeabilidade , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/farmacocinética , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/farmacocinética , Cetonas/química , Cetonas/farmacologia , Relação Estrutura-Atividade
3.
Biomed Res Int ; 2024: 1741539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628498

RESUMO

Background: Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective: The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods: The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results: Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion: This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.


Assuntos
Catequina/análogos & derivados , Polietilenoglicóis , Polímeros , Polímeros/química , Polietilenoglicóis/química , Benzofenonas , Cetonas/farmacologia , Cetonas/química , Propriedades de Superfície , Éteres , Titânio/química
4.
J Mater Chem B ; 12(19): 4533-4552, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477504

RESUMO

Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.


Assuntos
Benzofenonas , Materiais Biocompatíveis , Cetonas , Polietilenoglicóis , Polímeros , Próteses e Implantes , Propriedades de Superfície , Polímeros/química , Polímeros/farmacologia , Benzofenonas/química , Cetonas/química , Cetonas/farmacologia , Humanos , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais
5.
Gen Comp Endocrinol ; 350: 114470, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346454

RESUMO

Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of ß-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.


Assuntos
Squalus acanthias , Squalus , Animais , Squalus/metabolismo , Squalus acanthias/metabolismo , Cetonas/metabolismo , Cetonas/farmacologia , Glucose/metabolismo , Fígado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia
6.
Metabolism ; 154: 155818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369056

RESUMO

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Glucose/metabolismo , Volume Sistólico , Miocárdio/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo , Cetonas/farmacologia , Cetonas/metabolismo
7.
J Mater Chem B ; 12(12): 3031-3046, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411199

RESUMO

Carbon fiber-reinforced polyether ether ketone (CFRPEEK) implants have attracted widespread attention in the field of clinical bone defect repair. However, the surface bioinertness confines the application of CFRPEEK implants. Inspired by the study of rosmarinic acid (RA)-promoted osteogenic differentiation, a self-assembly surface modification method based on electrostatic interactions, involving deposition of sodium carboxymethyl cellulose/chitosan and rosmarinic acid layer by layer on the surface of poly-L-lysine modified hydroxy CFRPEEK (SCPP/CC5@RA), is proposed to introduce RA on the surface of CFRPEEK for bioactivation. After layer-by-layer self-assembly (LBL), the surface of SCPP/CC5@RA exhibits weak electrophoresis (11.43 eV), suitable hydrophilicity, and bioactivity. The results of in vitro studies indicate that the RA release behavior of SCPP/CC5@RA effectively regulates the immune-inflammatory response and promotes the differentiation of osteoblasts. The rapid release of RA (0.17 µg mL-1) in the initial stage can downregulate the secretion of inflammation-related cytokines and significantly reduce oxidative stress levels; the sustained release of RA (0.06 µg mL-1) in the late stage can upregulate the expression of osteogenesis-related genes and induce mineralization of osteoblasts. Moreover, the rabbit tibia defect model demonstrates that the LBL technique can enhance the osseointegration of CFRPEEK implants. Compared with the control group, the bone trabecular thickness of the SCPP/CC5@RA group increases by 1.36 times, and the maximum pushing force increases by 2.67 times. In summary, this study provides a promising LBL based RA delivery system for the development of a dual-functional CFRPEEK implant in the field of bone implant biomaterials.


Assuntos
Benzofenonas , Osseointegração , Osteogênese , Polímeros , Animais , Coelhos , Fibra de Carbono , Polietilenoglicóis/farmacologia , Cetonas/farmacologia , Anti-Inflamatórios/farmacologia
8.
Acta Biomater ; 177: 243-252, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367656

RESUMO

Porous structures are frequently used in surgical implants to strengthen the interlocking power produced by bone ingrowth. Therefore, we aimed to elucidate the mechanism underlying bone ingrowth into a porous structure accompanied by vascularization. A nonbioactive polyetheretherketone implant with a 3D-printed porous structure was prepared and implanted in a bone hole created in the tibias of rabbits. We observed bone ingrowth in the same individual specimens immediately and at 2, 4, 8, and 12 weeks post-implantation using in-vivo computed tomography (CT). Furthermore, a detailed evaluation with blood vessels of each specimen at 2, 4, and 12 weeks was performed with ex-vivo CT and histological specimen. Additional histological evaluation was performed using thin sections of an implant made with thermoplastic polyurethane having the same structure. As a result, the bone invasion began after four weeks, when the construction of fibrous tissue and the spread of new blood vessels within the voids matured. As the bone matured in the load-bearing area, new blood vessels outside the bone matrix regressed. This longitudinal evaluation study suggests that preceding fibrogenesis and vascularization may be key in developing bone ingrowth. STATEMENT OF SIGNIFICANCE: A porous structure is an essential structure for dental and orthopedic implants because it provides strong fixation through bone invasion. Although it was known that vascularization was involved in this, the details were not known. This in vivo study revealed that in order for bone ingrowth to begin, a preparatory period of approximately 4 weeks was required to establish blood flow inside and outside the implant. Furthermore, it was confirmed that by spreading the fibrous structure in advance, it has an advantageous effect on the migration of cells involved in the formation of bones and blood vessels. We pointed out that it is necessary to consider fibrogenesis and vascularization when creating future implants.


Assuntos
Osso e Ossos , Próteses e Implantes , Animais , Coelhos , Porosidade , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Neovascularização Patológica , Titânio/química , Osseointegração/fisiologia
9.
Dent Mater ; 40(4): 674-688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388252

RESUMO

OBJECTIVE: Polyetheretherketone (PEEK), a biomaterial with appropriate bone-like mechanical properties and excellent biocompatibility, is widely applied in cranio-maxillofacial and dental applications. However, the lack of antibacterial effect is an essential drawback of PEEK material and might lead to infection and osseointegration issues. This study aims to apply a natural antibacterial agent, totarol coating onto the 3D printed PEEK surface and find an optimized concentration with balanced cytocompatibility, osteogenesis, and antibacterial capability. METHODS: In this study, a natural antibacterial agent, totarol, was applied as a coating to fused filament fabrication (FFF) 3D printed PEEK surfaces at a series of increasing concentrations (1 mg/ml, 5 mg/ml, 10 mg/ml, 15 mg/ml, and 20 mg/ml). The samples were then evaluated for cytocompatibility with L929 fibroblast and SAOS-2 osteoblast using live/dead staining and CCK-8 assay. The antibacterial capability was assessed by crystal violet staining, live/dead staining, and scanning electron microscopy (SEM) utilizing the oral primary colonizer S. gordonii and isolates of mixed oral bacteria in a stirring system simulating the oral environment. The appropriate safe working concentration for totarol coating is selected based on the results of the cytocompatibility and antibacterial test. Subsequently, the influence on osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS) analysis of pre-osteoblasts. RESULTS: Our results showed that the optimal concentration of totarol solution for promising antibacterial coating was approximately 10 mg/ml. Such surfaces could play an excellent antibacterial role by inducing a contact-killing effect with an inhibitory effect against biofilm development without affecting the healing of soft and hard tissues around FFF 3D printed PEEK implants or abutments. SIGNIFICANCE: This study indicates that the totarol coated PEEK has an improved antibacterial effect with excellent biocompatibility providing great clinical potential as an orthopedic/dental implant/abutment material.


Assuntos
Abietanos , Benzofenonas , Implantes Dentários , Osteogênese , Polímeros , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Impressão Tridimensional , Propriedades de Superfície
10.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315678

RESUMO

BACKGROUND: Previous preclinical and human studies have shown that a high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. METHODS: In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-ß-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 minutes before an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 minutes after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 minutes later by an oral alcohol dose (0.8 g/kg). BAL was monitored for 240 minutes after alcohol exposure. RESULTS: In humans, the intake of KS before alcohol significantly blunted breath alcohol concentration and BAL, reduced ratings of alcohol liking and wanting more, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. CONCLUSION: KS altered physiological and subjective responses to alcohol in both humans and rats, and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating effects of alcohol.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Masculino , Humanos , Ratos , Feminino , Animais , Estudos Cross-Over , Cetonas/farmacologia , Voluntários Saudáveis , Método Simples-Cego , Ratos Wistar , Etanol/farmacologia , Edulcorantes , Concentração Alcoólica no Sangue , Suplementos Nutricionais , Água
11.
Biomed Mater ; 19(2)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38364280

RESUMO

As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.


Assuntos
Benzofenonas , Osseointegração , Polímeros , Polímeros/farmacologia , Polietilenoglicóis/química , Cetonas/química , Cetonas/farmacologia , Antibacterianos/farmacologia , Propriedades de Superfície
12.
Epigenomics ; 16(5): 293-308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356412

RESUMO

Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.


Assuntos
Metilação de DNA , Furanos , Policetídeos de Poliéter , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Cetonas/farmacologia , Cetonas/uso terapêutico , DNA/metabolismo , Linhagem Celular Tumoral , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
13.
J Mater Chem B ; 12(10): 2481-2485, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38375678

RESUMO

6-Nitrobenzo[cd]indole-2(1H)-ketone (compound C2) exhibits an excellent germicidal effect against methicillin-resistant Staphylococcus aureus (MRSA). Mechanism studies show that C2 induces ROS over-production, cell membrane damage, and ATP and virulence factor down-regulation in bacteria. More importantly, C2 can inhibit biofilm formation and accelerate wound healing in a mouse infection model induced by MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Antibacterianos/farmacologia , Cetonas/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Modelos Animais de Doenças , Indóis/farmacologia
14.
ACS Biomater Sci Eng ; 10(2): 825-837, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38267012

RESUMO

This study aimed to evaluate the bioactivity of poly(ether ether ketone) (PEEK) after surface modification by persistent photoconductive strontium titanate (SrTiO3) magnetron sputtering and ultraviolet (UV) C irradiation. According to the different modifications, the PEEK specimens were randomly divided into five groups (n = 38/group): PEEK, Sr100-PEEK, Sr200-PEEK, UV/PEEK, and UV/Sr200-PEEK. Then, the specimens of Sr100-PEEK and Sr200-PEEK groups were, respectively, coated with 100 and 200 nm thickness photocatalyst SrTiO3 on the PEEK surface by magnetron sputtering. Subsequently, UV-C light photofunctionalized the specimens of PEEK and Sr200-PEEK groups to form UV/PEEK and UV/Sr200-PEEK groups. The specimens were characterized by a step meter, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), and a water contact angle meter. The release test of the Sr ion was performed by inductively coupled plasma mass spectrometry (ICP-MS). In vitro study, osteogenic activity (MC3T3-E1 osteoblast-like cells) and epithelial and connective tissue attachment (gingival epithelial cells GE1 and fibroblasts NIH3T3) were analyzed in five groups. Surface morphology of the specimens was changed after coating, and the Sr content on the Sr-PEEK surface was increased with increasing coating thickness. In addition, the contact angle was increased significantly after magnetron sputtering. After UV-C photofunctionalization, the content of surface elements changed and the contact angle was decreased. The release of Sr ion was sustained, and the final cumulative release amount did not exceed the safety limit. In vitro experiments showed that SrTiO3 improved the cell activity of MC3T3-E1 and UV-C irradiation further enhanced the osteogenic performance of PEEK. Besides, UV-C irradiation also significantly promoted the cell viability, development, and expression of adhesion proteins of GE1 and NIH3T3 on PEEK. The present investigation demonstrated that nano SrTiO3 coating with UV-C photofunctionalization synergistically enhanced the osteogenic properties and soft tissue sealing function of PEEK in vitro.


Assuntos
Benzofenonas , Cetonas , Óxidos , Polietilenoglicóis , Polímeros , Estrôncio , Titânio , Camundongos , Animais , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Éter , Células NIH 3T3 , Etil-Éteres , Éteres
15.
Adv Healthc Mater ; 13(7): e2302873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041688

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection and compromised immunity are the severe complications associated with implantation surgery in diabetes mellitus. Enhancing the antibacterial and immunomodulatory properties of implants represents an effective approach to improve the osseointegration of implant in diabetes mellitus. Herein, guanidination carbon dots (GCDs) with antibacterial and immunoregulatory functions are synthesized. The GCDs demonstrate killing effect on MRSA without detectable induced resistance. Additionally, they promote the polarization of macrophages from the M1 to M2 subtype, with the inhibiting pro-inflammatory cytokines and promoting anti-inflammatory factors. Correspondingly, GCDs are immobilized onto sulfonated polyether ether ketone (SP@GCDs) using a polyvinyl butyraldehyde (PVB) coating layer through soaking-drying technique. SP@GCDs maintain stable antibacterial efficacy against MRSA for six consecutive days and retain the immunomodulatory function, while also possessing the long-term storage stability and biocompatibility of more than 6 months. Moreover, SP@GCDs significantly promote the proliferation and mineralization of osteoblasts. SP@GCDs facilitate osteogenesis through immunoregulatory. Additionally, SP@GCDs exert stable antibacterial and immune regulatory functions in implantation site of a diabetes rat, effectively promoting implant osseointegration regardless of the MRSA infection. These findings provide valuable insights into implant modification through designing nanomaterials with multifunction for enhancing osseointegration of diabetes mellitus, suggesting the promising clinical application prospects.


Assuntos
Anti-Infecciosos , Benzofenonas , Diabetes Mellitus , Staphylococcus aureus Resistente à Meticilina , Polímeros , Ratos , Animais , Osseointegração , Carbono , Polietilenoglicóis/farmacologia , Anti-Infecciosos/farmacologia , Cetonas/farmacologia , Antibacterianos/farmacologia , Osteogênese , Propriedades de Superfície
16.
Am J Physiol Endocrinol Metab ; 326(1): E61-E72, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991451

RESUMO

Acute ingestion of the exogenous ketone monoester supplement [(R)-3-hydroxybutyl-(R)-3-hydroxybutyrate] lowers blood glucose, suggesting therapeutic potential in individuals with impaired glucose metabolism. However, it is unknown how acute or repeated ingestion of exogenous ketones affects blood glucose control in individuals with type 2 diabetes (T2D). We conducted two randomized, counterbalanced, double-blind, placebo-controlled crossover trials to determine if 1) acute exogenous ketone monoester (0.3 g/kg body mass; N = 18) or 2) 14-day thrice daily premeal exogenous ketone monoester (15 g; N = 15) supplementation could lower blood glucose in individuals living with T2D. A single dose of the ketone monoester supplement elevated blood ß-OHB to ∼2 mM. There were no differences in the primary outcomes of plasma glucose concentration (acutely) or serum fructosamine (glycemic control across 14 days) between conditions. Ketone monoester ingestion acutely increased insulin and lowered nonesterified fatty acid concentrations; plasma metabolomics confirmed a reduction in multiple free fatty acids species and select gluconeogenic amino acids. In contrast, no changes were observed in fasting metabolic outcomes following 14 days of supplementation. In the context of these randomized controlled trials, acute or repeated ketone monoester ingestion in adults with T2D did not lower blood glucose when consumed acutely in a fasted state and did not improve glycemic control following thrice daily premeal ingestion across 14 days. Future studies exploring the mechanistic basis for the (lack of) glucose-lowering effect of exogenous ketone supplementation in T2D and other populations are warranted.NEW & NOTEWORTHY Exogenous ketone supplements can acutely lower blood glucose, suggesting therapeutic potential in individuals with impaired glucose metabolism. However, the effect of exogenous ketones on glucose metabolism in adults with type 2 diabetes has not been investigated in a controlled setting. In adults with type 2 diabetes, ketone monoester ingestion did not lower blood glucose acutely in a fasted state and did not improve glycemic control across thrice daily premeal ingestion across 14 days.


Assuntos
Diabetes Mellitus Tipo 2 , Cetonas , Humanos , Adulto , Cetonas/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Controle Glicêmico , Ácido 3-Hidroxibutírico , Ensaios Clínicos Controlados Aleatórios como Assunto , Suplementos Nutricionais
17.
J Diet Suppl ; 21(3): 408-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38145410

RESUMO

Exogenous ketone supplements have been suggested to have potential cardiovascular benefits, but their overall effect on blood pressure is unclear. Our objective was to perform a systematic review and meta-analysis on the effects of exogenous ketone supplements on blood pressure (BP) and concomitant changes in resting heart rate (HR). Five databases were searched on January 27th, 2023, for randomized and non-randomized studies. A random-effects model meta-analysis was performed including all studies jointly and separately for acute and chronic ingestion of ketone supplements. Out of 4012 studies identified in the search, 4 acute and 6 chronic studies with n = 187 participants were included. Pooled results (n = 10) showed no change in systolic (SMD [95% CI]= -0.14 [-0.40; 0.11]; I2= 30%; p = 0.17) or diastolic BP (-0.12 [-0.30; 0.05]; I2= 0%; p = 0.69), with a potential tendency observed toward increased resting heart rate (0.17 [-0.14; 0.47]; I2= 40%; p = 0.10). Similar results for systolic and diastolic BP were observed when assessing separately the effect of acute and chronic ingestion of ketone supplements (p ≥ 0.33). Supplement dosage was found to modulate the increase in resting heart rate (0.019 ± 0.006; p = 0.013; R2=100%), suggesting that higher supplement doses lead to a higher resting heart rate. Based on currently available data, acute or prolonged ingestion of ketone supplements does not seem to modulate BP. However, a tendency for HR to increase after acute ingestion was observed, particularly with higher doses. Higher quality studies with appropriate standardized measurements are needed to confirm these results.


Assuntos
Suplementos Nutricionais , Cetonas , Humanos , Pressão Sanguínea , Cetonas/farmacologia , Ingestão de Alimentos
18.
Biomaterials ; 303: 122355, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948855

RESUMO

Diabetic infectious microenvironment (DIME) frequently leads to a critical failure of osseointegration by virtue of its main peculiarities including typical hyperglycemia and pathogenic infection around implants. To address the plaguing issue, we devise a glucose-primed orthopedic implant composed of polyetheretherketone (PEEK), Cu-chelated metal-polyphenol network (hauberk coating) and glucose oxidase (GOx) for boosting diabetic osseointegration. Upon DIME, GOx on implants sostenuto consumes glucose to generate H2O2, and Cu liberated from hauberk coating catalyzes the H2O2 to highly germicidal •OH, which massacres pathogenic bacteria through photo-augmented chemodynamic therapy. Intriguingly, the catalytic efficiency of the coating gets greatly improved with the turnover number (TON) of 0.284 s-1. Moreover, the engineered implants exhibit satisfactory cytocompatibility and facilitate osteogenicity due to the presence of Cu and osteopromotive polydopamine coating. RNA-seq analysis reveals that the implants enable to combat infections and suppress pro-inflammatory phenotype (M1). Besides, in vivo evaluations utilizing infected diabetic rat bone defect models at week 4 and 8 authenticate that the engineered implants considerably elevate osseointegration through pathogen elimination, inflammation dampening and osteogenesis promotion. Altogether, our present study puts forward a conceptually new tactic that arms orthopedic implants with glucose-primed antibacterial and osteogenic capacities for intractable diabetic osseointegration.


Assuntos
Diabetes Mellitus , Osseointegração , Ratos , Animais , Glucose/farmacologia , Peróxido de Hidrogênio/farmacologia , Polietilenoglicóis/farmacologia , Benzofenonas/farmacologia , Cetonas/farmacologia , Antibacterianos/farmacologia , Osteogênese , Diabetes Mellitus/tratamento farmacológico , Propriedades de Superfície
19.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959702

RESUMO

Recent studies have demonstrated the antiproliferative and cytotoxic effects of aza-steroids and steroidal sapogenins on human cancer cell lines. The scientific community has shown a growing interest in these compounds as drug candidates for cancer treatment. In the current work, we report the synthesis of new diosgenin oxime derivatives as potential antiproliferative agents. From (25 R)-5α-spirost-3,5,6-triol (1), a diosgenin derivative, ketones 2, 3, 4, and 9 were obtained and used as precursors of the new oximes. A condensation reaction was carried out between the steroidal ketones (2, 3, 4, and 9) with hydroxylamine hydrochloride in 2,4,6-trimethylpyridine to produce five spirostanic oximes (four of them are not reported before) with a 42-96% yield. Also, a new spirostanic α, ß-unsaturated cyanoketone was synthesized via Beckmann fragmentation using thionyl chloride with a 62% yield. Furthermore, we proposed a reaction mechanism with the aim of explaining such transformation.


Assuntos
Antineoplásicos , Diosgenina , Humanos , Cianocetona , Diosgenina/farmacologia , Esteroides/farmacologia , Antineoplásicos/farmacologia , Oximas/farmacologia , Cetonas/farmacologia
20.
Adv Healthc Mater ; 12(32): e2301772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723927

RESUMO

Key factors contributing to implantation failures include implant-associated infections (IAIs) and insufficient osseointegration of the implants. Polyetheretherketone (PEEK) is widely used in orthopedics, yet its clinical applications are restricted due to its poor osteogenic and antibacterial properties as well as inadequate immune responses. To overcome these drawbacks, a novel spatiotemporal immunomodulation approach is proposed, chelating Cu-Sr bilayer bioactive glass nanoparticles (CS-BGNs) onto the PEEK surface via polydopamine (PDA). The CS-BGNs possess a bilayer core-shell structure where copper is distributed in the outer layer and strontium is clustered in the inner layer. The results show that CS-BGNs/PDA functionalized PEEK demonstrates a controlled and sequential release of Cu2+ and Sr2+ . In the early stage, Cu2+ from the outer layer releases rapidly, while Sr2+ from the inner layer releases in the late stage. This well-ordered release pattern modulates the phenotypic transition of macrophages, which induces M1 polarization in the early stage and M2 polarization in the late stage. Combined with the direct effects of Cu2+ and Sr2+ , the spatiotemporal immunomodulation not only benefits the early antibacterial and tissue-healing process, but also promotes the long-term process of osseointegration, providing new perspectives on the design of novel immunomodulatory biomaterials.


Assuntos
Cobre , Nanopartículas , Cobre/farmacologia , Cobre/química , Osteogênese , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Osseointegração , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...