Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Korean J Intern Med ; 37(2): 455-459, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35272444

RESUMO

BACKGROUND/AIMS: Data comparing the antibody responses of different coronavirus disease 2019 (COVID-19) vaccine platforms according to dose with natural severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced antibody responses are limited. METHODS: Blood samples from adult patients with mild and severe COVID-19 and healthcare workers who received ChAdOx1 nCoV-19 vaccine (2nd dose at 12-week intervals) and BNT162b2 vaccine (2nd dose at 3-week intervals) were collected and compared by immunoglobulin G immune responses to SARS-CoV-2 specific spike protein using an in-house-developed enzyme-linked immunosorbent assay. RESULTS: A total of 53 patients, including 12 and 41 with mild and severe COVID-19, respectively, were analyzed. In addition, a total of 73 healthcare workers, including 37 who received ChAdOx1 nCoV-19 and 36 who received BNT162b2, were enrolled. Antibody responses after the first and second doses of the ChAdOx1 nCoV-19 vaccine or the first dose of the BNT162b2 vaccine were similar to those in convalescent patients with mild COVID-19, but lower than those in convalescent patients with severe COVID-19, respectively. However, after the second dose of the BNT162b2 vaccine, the antibody response was comparable to that in convalescent patients with severe COVID-19. CONCLUSION: Our data suggest that the second dose of mRNA vaccination may be more beneficial in terms of long-term immunity and prevention of SARS-CoV-2 variant infection than a single dose of COVID-19 vaccination or homologous second challenge ChAdOx1 nCoV-19.


Assuntos
Formação de Anticorpos , Vacina BNT162 , COVID-19 , ChAdOx1 nCoV-19 , SARS-CoV-2 , Adulto , Formação de Anticorpos/efeitos dos fármacos , Vacina BNT162/imunologia , Vacina BNT162/farmacologia , Vacina BNT162/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Vacinas contra COVID-19/uso terapêutico , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/farmacologia , ChAdOx1 nCoV-19/uso terapêutico , Humanos
2.
J Virol ; 96(4): e0157821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908443

RESUMO

The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.


Assuntos
COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/prevenção & controle , SARS-CoV-2/imunologia , Animais , COVID-19/epidemiologia , COVID-19/genética , COVID-19/imunologia , ChAdOx1 nCoV-19/genética , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/farmacologia , Feminino , Células HEK293 , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Pandemias , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA