Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
Drug Des Devel Ther ; 18: 1531-1546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737331

RESUMO

Purpose: Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods: The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results: HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion: Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Pirazinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pirazinas/farmacologia , Pirazinas/química , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Camundongos Nus , Camundongos Endogâmicos BALB C , Células A549 , Movimento Celular/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Células Tumorais Cultivadas
2.
J Biol Inorg Chem ; 29(2): 187-199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38607392

RESUMO

Aß42 plaque formation is one of the preliminary pathologic events that occur post traumatic brain injury (TBI) which is also among the most noteworthy hallmarks of AD. Their pre symptomatic detection is therefore vital for better disease management. Chalcone-picolinic acid chelator derivative, 6-({[(6-carboxypyridin-2-yl)methyl](2-{4-[(2E)-3-[4-(dimethyl amino)phenyl]prop-2-enoyl]phenoxy}ethyl)amino}methyl)pyridine-2-carboxylic acid, Py-chal was synthesized to selectively identify amyloid plaques formed post head trauma using SPECT imaging by stable complexation to 99mTc with > 97% efficiency without compromising amyloid specificity. The binding potential of the Py-chal ligand to amyloid plaques remained high as confirmed by in vitro binding assay and photophysical spectra. Further, the Py-chal complex stained amyloid aggregates in the brain sections of rmTBI mice model. In vivo scintigraphy in TBI mice model displayed high uptake followed by high retention while the healthy rabbits displayed higher brain uptake followed by a rapid washout attributed to absence of amyloid plaques. Higher uptake in brain of TBI model was also confirmed by ex vivo biodistribution analysis wherein brain uptake of 3.38 ± 0.2% ID/g at 2 min p.i. was observed for TBI mice model. This was followed by prolonged retention and more than twofold higher activity as compared to sham mice brain. This preliminary data suggests the specificity of the radiotracer for amyloid detection post head trauma and applicability of 99mTc labeled Py-chal complex for TBI-induced ß-amyloid SPECT imaging.


Assuntos
Peptídeos beta-Amiloides , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Tecnécio/química , Distribuição Tecidual , Chalcona/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Traumatismos Craniocerebrais/diagnóstico por imagem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
3.
Bioorg Chem ; 147: 107310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583249

RESUMO

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Assuntos
Antineoplásicos , Proliferação de Células , Cisplatino , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis , Neoplasias do Colo do Útero , Humanos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Estrutura Molecular , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Polimerização/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Simulação de Acoplamento Molecular , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
4.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457745

RESUMO

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Assuntos
Antituberculosos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Triazóis , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Estrutura-Atividade , Enterococcus faecalis/efeitos dos fármacos , Estrutura Molecular , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química
5.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407541

RESUMO

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Testes de Sensibilidade Microbiana , Streptococcus mutans , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Modelos Moleculares , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Relação Dose-Resposta a Droga
6.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297894

RESUMO

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Chalconas , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Inibidores de Histona Desacetilases , Quinazolinas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Histona Desacetilases/metabolismo , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química
7.
Biomolecules ; 14(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38397453

RESUMO

The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a-k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer.


Assuntos
Acroleína/análogos & derivados , Antineoplásicos , Chalcona , Chalconas , Neoplasias do Colo , Humanos , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Chalconas/farmacologia , Linhagem Celular Tumoral , Células CACO-2 , Chalcona/farmacologia , Chalcona/química , Proliferação de Células , Antineoplásicos/química , Neoplasias do Colo/tratamento farmacológico , Apoptose , Estrutura Molecular
8.
Arch Pharm (Weinheim) ; 357(5): e2300640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227398

RESUMO

Breast cancer, an epithelial malignant tumor that occurs in the terminal ducts of the breast, is the most common female malignancy. Currently, approximately 70%-80% of breast cancer with early-stage, nonmetastatic disorder is curable, but the emergency of drug resistance often leads to treatment failure. Moreover, advanced breast cancer with distant organ metastases is incurable with the available therapeutics, creating an urgent demand to explore novel antibreast cancer agents. Chalcones, the precursors for flavonoids and isoflavonoids, exhibit promising activity against various breast cancer hallmarks, inclusive of proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics, representing useful scaffolds for the discovery of novel antibreast cancer chemotherapeutic candidates. In particular, chalcone hybrids could act on two or more different biological targets simultaneously with more efficacy, lower toxicity, and less susceptibility to resistance. Accordingly, there is a huge scope for application of chalcone hybrids to tackle the present difficulties in breast cancer therapy. This review outlines the chalcone hybrids with antibreast cancer potential developed from 2018. The structure-activity relationships as well as mechanisms of action are also discussed to shed light on the development of more effective and multitargeted chalcone candidates.


Assuntos
Antineoplásicos , Neoplasias da Mama , Chalconas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Relação Estrutura-Atividade , Chalconas/farmacologia , Chalconas/química , Chalcona/farmacologia , Chalcona/química , Animais , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular
9.
J Biomol Struct Dyn ; 42(7): 3604-3615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37293930

RESUMO

Acetylcholinesterase inhibitors (AChEIs) have become a significant target in the search for an efficient treatment of Alzheimer's disease. Chalcone-based compounds display a strong potency to hinder AChE. So, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential and their structures were characterized based on spectroscopic methods including IR, 1H NMR, 13C NMR and HRMS. Chalcone derivatives were screened against AChE. Most of them exhibited potent inhibitory activity against AChE. Compound 11i showed the most potent activity toward acetylcholinesterase compared to the positive compound, Galantamine. Docking studies into the active site of the acetylcholinesterase enzyme ravealed the significant docking score of the synthesized compounds with docking score of -7.959 to -9.277 kcal/mol when compared to the co-crystallized ligand, Donepezil (-10.567 kcal/mol). The interaction's stability was further assessed using a conventional atomistic 100 ns dynamics simulation study, which revealed the conformational stability of representative compound 11i in the cavity of the acetylcholinesterase enzyme.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Chalcona , Chalconas , Humanos , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Chalconas/farmacologia , Chalconas/química , Simulação de Acoplamento Molecular , Modelos Moleculares , Chalcona/química , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura Molecular
10.
Expert Opin Ther Targets ; 27(12): 1257-1269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112471

RESUMO

INTRODUCTION: In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of naturally occurring chemicals. Chalcone exhibits extensive biological activity and has drawn attention in this context due to its function in the GABA receptor. Epilepsy and GABA receptors are related. It is a chronic neurological condition that affects globally. AREAS COVERED: Numerous neurological disorders, including anxiety and epilepsy, have been related to GABA, the brain's most prevalent inhibitory neurotransmitter. We go through the role of GABA receptors in anxiety and epilepsy in this review. The structure-activity relationship of chalcone and its derivatives on the GABA receptor is covered in our final section. EXPERT OPINION: GABA is a potential therapeutic target for issues associated with the nervous system. We talk about the potential effects of chalcone as a treatment for epilepsy and anxiety on the GABA receptor. Therefore, thorough research is necessary in this regard; the value of in silico tools in developing and enhancing GABA agonists is significant.


Assuntos
Chalcona , Chalconas , Epilepsia , Humanos , Receptores de GABA , Chalcona/química , Chalcona/farmacologia , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico , Receptores de GABA-A/fisiologia
11.
Bioorg Med Chem ; 96: 117516, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944413

RESUMO

Cancer still represents a serious public health problem and one of the main problems related to the worsening of this disease is the ability of some tumors to develop metastasis. In this work, we synthesized a new series of chalcones and isoxazoles derived from eugenol and analogues as molecular hybrids and these compounds were evaluated against different tumor cell lines. This structural pattern was designed considering the cytotoxic potential already known for eugenol, chalcones and isoxazoles. Notably, chalcones 7, 9, 10, and 11 displayed significant activity (4.2-14.5 µM) against two cancer cell lines, surpassing the potency of the control drug doxorubicin. The reaction of chalcones with hydroxylamine hydrochloride provided the corresponding isoxazoles that were inactive against these cancer cells. The dihydroeugenol chalcone 7 showed the most promising results, demonstrating higher potency against HepG2 (CC50: 4.2 µM) and TOV-21G (CC50: 7.2 µM). Chalcone 7 was also three times less toxic than doxorubicin considering HepG2 cells, with a selectivity index greater than 11. Further investigations including clonogenic survival, cell cycle progression and cell migration assays confirmed the compelling antitumoral potential of chalcone 7, as it reduced long-term survival due to DNA fragmentation, inducing cell death and inhibiting HepG2 cells migration. Moreover, in silico studies involving docking and molecular dynamics revealed a consistent binding mode of chalcone 7 with metalloproteinases, particularly MMP-9, shedding light on its potential mechanism of action related to anti-migratory effects. These significant findings suggest the inclusion of compound 7 as a promising candidate for future studies in the field of cancer therapeutics.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neoplasias , Chalcona/farmacologia , Chalcona/química , Chalconas/farmacologia , Chalconas/química , Eugenol/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Isoxazóis/farmacologia , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
12.
J Org Chem ; 88(21): 15318-15325, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37851925

RESUMO

Four novel compounds, conarubins A-D (1-4), were isolated from the whole plants of Conamomum rubidum collected in Vietnam. Their structures were elucidated by extensive spectroscopic analyses and by quantum chemical calculations of NMR and ECD. Compounds 1 and 2 were the first examples of monoterpene-monoterpene-chalcone conjugates in nature, whereas compound 4 was an unprecedented monoterpene-substituted chalcone containing a 3,4,5-trioxygenated cyclohexa-2,5-diene-1-one ring. The anti-inflammatory and cytotoxic activities of all isolates were investigated.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Chalcona/farmacologia , Chalcona/química , Monoterpenos/farmacologia , Monoterpenos/química , Chalconas/química , Anti-Inflamatórios/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
13.
Future Med Chem ; 15(20): 1903-1913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877262

RESUMO

In this study, we evaluated the potential of curated structurally modified chalcone derivatives as anti-tuberculosis (TB) agents through computer-aided drug design. Compounds from the flavonoid family known as chalcones were identified by the chemical group 1,3-diaryl-2-propen-1-one. After a search of the literature, 14 outstanding structurally modified chalcones were selected and evaluated for inhibitory activity against Mycobacterium tuberculosis H37Rv targets. The therapeutic potential of the chalcones was directly based on the drug-likeness and pharmacokinetic properties of the synthesized compounds. Prompt drug selection and personalized therapy are required to prevent TB from progressing and spreading to others. Pharmacokinetic parameters helps in the identification of lead molecule, at the earlier stages of drug development.


Assuntos
Chalcona , Chalconas , Mycobacterium tuberculosis , Tuberculose , Humanos , Chalcona/farmacologia , Chalcona/química , Chalconas/farmacologia , Chalconas/química , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Antituberculosos/química
14.
Bioorg Med Chem Lett ; 95: 129467, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666364

RESUMO

Chalcones and their derivatives are a privileged scaffold in medicinal chemistry, demonstrating numerous biological activities. These molecules have shown significant potential toward the development of novel cancer therapies. While much is known about modification to the chalcone aryl rings, little is known about conformations of the bridge between the aryl rings. Here we report the synthesis and biological evaluation of a series of molecules with flexible and rigid bridge conformations. Crystal structures of a select group of molecules were determined. Flexibility in the chalcone bridge containing the enone moiety was determined to be important for activity. Screening in three distinct cancer cell lines showed significant differences in the activity between the flexible and rigid conformations. Crystal structures suggest an increase in bond rotation and weakened π-bonding in the flexible chalcone bridge, which may contribute to the stronger anti-proliferative activity.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Chalcona/farmacologia , Chalcona/química , Chalconas/química , Relação Estrutura-Atividade , Antineoplásicos/química
15.
Eur J Med Chem ; 257: 115540, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301075

RESUMO

Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract with high morbidity and mortality. Our previous studies have demonstrated that indole-chalcone-based compounds targeting tubulin displayed potential cytotoxicity to CRC cells. Herein, three new series of derivatives were systematically designed and synthesized to explore their structure-activity relationship (SAR) against CRC based on prior research. Among them, a representative fluorine-containing analog (FC116) exerted superior efficacy on HCT116 (IC50 = 4.52 nM) and CT26 (IC50 = 18.69 nM) cell lines, and HCT116-xenograft mice with tumor growth inhibition rate of 65.96% (3 mg/kg). Of note, FC116 could also suppress the growth of organoid models (IC50 = 1.8-2.5 nM) and showed adenoma number inhibition rate of 76.25% at the dose of 3 mg/kg in APCmin/+ mice. In terms of mechanism, FC116 could induce endoplasmic reticulum (ER) stress to produce excess reactive oxygen species (ROS), leading to mitochondrial damage to promote the apoptosis of CRC cells by targeting microtubules. Our results support that indole-chalcone compounds are promising tubulin inhibitors and highlight the potential of FC116 to combat CRC.


Assuntos
Chalcona , Chalconas , Neoplasias Colorretais , Humanos , Animais , Camundongos , Tubulina (Proteína)/metabolismo , Chalcona/farmacologia , Chalcona/química , Colchicina/farmacologia , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalconas/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Sítios de Ligação , Indóis/farmacologia , Indóis/química , Neoplasias Colorretais/tratamento farmacológico
16.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241764

RESUMO

Flavonoids and chalcones are known for their manifold biological activities, of which many affect the central nervous system. Pyranochalcones were recently shown to have a great neurogenic potential, which is partly due to a specific structural motif-the pyran ring. Accordingly, we questioned if other flavonoid backbones with a pyran ring as structural moiety would also show neurogenic potential. Different semi-synthetic approaches starting with the prenylated chalcone xanthohumol, isolated from hops, led to pyranoflavanoids with different backbones. We identified the chalcone backbone as the most active backbone with pyran ring using a reporter gene assay based on the promoter activity of doublecortin, an early neuronal marker. Pyranochalcones therefore appear to be promising compounds for further development as a treatment strategy for neurodegenerative diseases.


Assuntos
Chalcona , Chalconas , Humulus , Propiofenonas , Chalcona/química , Flavonoides/química , Propiofenonas/química , Humulus/química
17.
Arch Pharm (Weinheim) ; 356(7): e2300106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37208792

RESUMO

New imidazopyridine-chalcone analogs were synthesized through the Claisen-Schmidt condensation reaction. The newly synthesized imidazopyridine-chalcones (S1-S12) were characterized using spectroscopic and elemental analysis. The structures of compounds S2 and S5 were confirmed by X-ray crystallography. The global chemical reactivity descriptor parameter was calculated using theoretically (DFT-B3LYP-3-211, G) estimated highest occupied molecular orbital and lowest unoccupied molecular orbital values and the results are discussed. Compounds S1-S12 were screened on A-549 (lung carcinoma epithelial cells) and MDA-MB-231 (M.D. Anderson-Metastatic Breast 231) cancer cell lines. Compounds S6 and S12 displayed exceptional antiproliferative activity against lung A-549 cancer cells with IC50 values of 4.22 and 6.89 µM, respectively, compared to the standard drug doxorubicin (IC50 = 3.79 µM). In the case of the MDA-MB-231 cell line, S1 and S6 exhibited exceptionally superior antiproliferative activity with IC50 of 5.22 and 6.50 µM, respectively, compared to doxorubicin (IC50 = 5.48 µM). S1 was found to be more active than doxorubicin. Compounds S1-S12 were tested for their cytotoxicity on human embryonic kidney 293 cells, which confirmed the nontoxic nature of the active compounds. Further molecular docking studies verified that compounds S1-S12 have a higher docking score and interacted well with the target protein. The most active compound S1 interacted well with the target protein carbonic anhydrase II in complex with pyrimidine-based inhibitor, and S6 with human Topo IIα ATPase/AMP-PNP. The results suggest that imidazopyridine-chalcone analogs may serve as new leads as anticancer agents.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Chalconas/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Chalcona/química , Simulação de Acoplamento Molecular , Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
18.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110575

RESUMO

Chalcones are interesting anticancer drug candidates which have attracted much interest due to their unique structure and their extensive biological activity. Various functional modifications in chalcones have been reported, along with their pharmacological properties. In the current study, novel chalcone derivatives with the chemical base of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-arylprop-2-en-1-one were synthesized, and the structure of their molecules was confirmed through NMR spectroscopy. The antitumor activity of these newly synthesized chalcone derivatives was tested on mouse (Luc-4T1) and human (MDA-MB-231) breast cancer cell lines. The antiproliferative effect was evaluated through SRB screening and the MTT assay after 48 h of treatment at different concentrations. Interestingly, among the tested chalcone derivatives, chalcone analogues with a methoxy group were found to have significant anticancer activity and displayed gradient-dependent inhibition against breast cancer cell proliferation. The anticancer properties of these unique analogues were examined further by cytometric analysis of the cell cycle, quantitative PCR, and the caspases-Glo 3/7 assay. Chalcone methoxy derivatives showed the capability of cell cycle arrest and increased Bax/Bcl2 mRNA ratios as well as caspases 3/7 activity. The molecular docking analysis suggests that these chalcone methoxy derivatives may inhibit anti-apoptotic proteins, particularly cIAP1, BCL2, and EGFRK proteins. In conclusion, our findings confirm that chalcone methoxy derivatives could be considered to be potent drug candidates against breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Chalcona , Chalconas , Humanos , Animais , Camundongos , Feminino , Chalconas/química , Chalcona/química , Simulação de Acoplamento Molecular , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/química , Apoptose , Isoquinolinas/farmacologia , Caspases , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
19.
Bioorg Med Chem Lett ; 85: 129239, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924947

RESUMO

A series of 5' monosubstituted chalcone derivatives were synthesized to explore their antitumor activity and mechanism of action in vitro. The structures of 5' monosubstituted chalcone derivatives synthesized by reactions such as Suzuki coupling were confirmed by 1H NMR, 13C NMR and MS, and the target compounds were not reported in the literature. The antitumor activity of the aimed compounds was tested by MTT colorimetric method in vitro. Compound 5c has an IC50 value of 1.97 µM for K562 and a value of 2.23 µM for HepG2. Further investigation of the mechanism of action of compound 5c was found to have effects on K562 cell morphology, proliferation, apoptosis, cell cycle, and wound healing of HepG2 cells. The results showed that compound 5c has research value in antitumor activity and mechanism of action in vitro.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Chalcona/química , Chalconas/química , Relação Estrutura-Atividade , Proliferação de Células , Antineoplásicos/química , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
20.
Bioorg Chem ; 134: 106444, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893547

RESUMO

The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/ß-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and ß-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulação de Acoplamento Molecular , Chalcona/química , Chalconas/farmacologia , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Oxiquinolina/farmacologia , Estaurosporina/farmacologia , Apoptose , Moduladores de Tubulina , Antineoplásicos/química , Receptores ErbB , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...