Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 997
Filtrar
1.
Structure ; 32(5): 575-584.e3, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38412855

RESUMO

Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.


Assuntos
Trifosfato de Adenosina , Chaperonina 60 , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Chaperonina 60/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Ligação Proteica , Sítios de Ligação , Estabilidade Proteica , Mutação , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Conformação Proteica
2.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140965, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739110

RESUMO

The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.


Assuntos
Bacteriófagos , Príons , Animais , Proteínas Priônicas/química , Bacteriófagos/metabolismo , Príons/química , Chaperonina 60/química , Trifosfato de Adenosina
3.
Methods Mol Biol ; 2693: 263-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540441

RESUMO

The subject matter of this chapter is defined by the title of its two previous editions, "Immunohistochemistry of human Hsp60 in health and disease: From autoimmunity to cancer," the latest of which appeared in 2018. Since then, considerable advances have been made in the fields of autoimmunity and cancer and some of them are closely linked to progress in the understanding of the chaperone system (CS). This is a physiological system composed of molecular chaperones, co-chaperones, chaperone cofactors, and chaperone interactors and receptors. The molecular chaperones are the chief members of the CS, and here we focus on one of them, Hsp60. Since extracellular vesicles (EVs) have also emerged as key factors in the functioning of the CS and in carcinogenesis, we have incorporated a detailed section about them. This chapter explains how to assess Hsp60 in tissues and in EVs for application in diagnosis, prognostication, and patient monitoring and, eventually, for developing methods using them as therapeutic targets and tools. We describe immunohistochemical techniques, immunofluorescence and double immunofluorescence-confocal microscopy, and methods for collecting and isolating EVs from blood plasma and for assessing their contents in Hsp60 and related microRNAs (miRNAs). All these procedures have proven to be reliable and useful in the study and management of various types of cancer and inflammatory and autoimmune conditions.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Imuno-Histoquímica , Neoplasias/diagnóstico , Chaperonas Moleculares , Chaperoninas , Chaperonina 60/química
4.
Plant Cell Environ ; 46(11): 3371-3391, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606545

RESUMO

The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.


Assuntos
Chaperonina 60 , Cloroplastos , Cloroplastos/metabolismo , Chaperonina 60/análise , Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Proteínas de Cloroplastos/metabolismo
5.
Angew Chem Int Ed Engl ; 62(31): e202304894, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37243902

RESUMO

Herein, we report an ATP-responsive nanoparticle (GroEL NP) whose surface is fully covered with the biomolecular machine "chaperonin protein GroEL". GroEL NP was synthesized by DNA hybridization between a gold NP with DNA strands on its surface and GroEL carrying complementary DNA strands at its apical domains. The unique structure of GroEL NP was visualized by transmission electron microscopy including under cryogenic conditions. The immobilized GroEL units retain their machine-like function and enable GroEL NP to capture denatured green fluorescent protein and release it in response to ATP. Interestingly, the ATPase activity of GroEL NP per GroEL was 4.8 and 4.0 times greater than those of precursor cys GroEL and its DNA-functionalized analogue, respectively. Finally, we confirmed that GroEL NP could be iteratively extended to double-layered ( GroEL ) 2 ${{^{({\rm GroEL}){_{2}}}}}$ NP.


Assuntos
Trifosfato de Adenosina , Chaperoninas , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 60/química , Dobramento de Proteína
6.
Cell ; 186(5): 1039-1049.e17, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764293

RESUMO

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Microscopia Crioeletrônica , Chaperonas Moleculares/metabolismo , Oxirredução , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Chaperonina 10/metabolismo
7.
Subcell Biochem ; 101: 213-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520309

RESUMO

Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.


Assuntos
Chaperonina 10 , Chaperoninas , Humanos , Chaperonina 10/química , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Dobramento de Proteína , Chaperoninas do Grupo II/metabolismo , Trifosfato de Adenosina/metabolismo
8.
Biochem Pharmacol ; 201: 115096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609646

RESUMO

The molecular chaperone protein HSP60 is mainly distributed in mitochondria and assists protein folding under physiological and pathological conditions. Accumulating evidence suggests abnormally expressed HSP60 in cancer is associated with clinicopathological features and prognosis of cancer patients. HSP60 could be used as a new biomarker for both diagnostic and prognostic purpose and tumor therapy. In this review article, we briefly described the structure, functional cycle, and regulatory mechanism of HSP60, and summarized its functional diversity in cancer as well as recent progress related to the diagnostic application of HSP60 and inhibitors against HSP60, which could provide us a comprehensive understanding about the value of HSP60 in tumor management.


Assuntos
Chaperonina 60 , Neoplasias , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Dobramento de Proteína
9.
J Am Chem Soc ; 144(6): 2667-2678, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107280

RESUMO

Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL14 and GroES7 at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature (Tm ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESy-ATPn, where y = 1, 2, 8 and n = 0, 1, 2, 8, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.Nat. Struct. Mol. Biol. 2006, 13, 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Magnésio/metabolismo , Chaperonina 10/química , Chaperonina 60/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Espectrometria de Massas , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Temperatura
10.
Cells ; 10(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34944015

RESUMO

The inflammatory response of macrophages is an orderly and complex process under strict regulation accompanied by drastic changes in morphology and functions. It is predicted that proteins will undergo structural changes during these finely regulated processes. However, changes in structural proteome in macrophages during the inflammatory response remain poorly characterized. In the present study, we applied limited proteolysis coupled mass spectrometry (LiP-MS) to identify proteome-wide structural changes in lipopolysaccharide (LPS)-activated macrophages. We identified 386 structure-specific proteolytic fingerprints from 230 proteins. Using the Gene Ontology (GO) biological process enrichment, we discovered that proteins with altered structures were enriched into protein folding-related terms, in which HSP60 was ranked as the most changed protein. We verified the structural changes in HSP60 by using cellular thermal shift assay (CETSA) and native CETSA. Our results showed that the thermal stability of HSP60 was enhanced in activated macrophages and formed an HSP10-less complex. In conclusion, we demonstrate that in situ structural systems biology is an effective method to characterize proteomic structural changes and reveal that the structures of chaperone proteins vary significantly during macrophage activation.


Assuntos
Proteínas de Choque Térmico/química , Ativação de Macrófagos , Macrófagos/metabolismo , Animais , Chaperonina 60/química , Chaperonina 60/metabolismo , Ontologia Genética , Proteínas de Choque Térmico/metabolismo , Espectrometria de Massas , Camundongos , Análise de Componente Principal , Proteólise , Proteoma/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
11.
J Mol Biol ; 433(24): 167322, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688687

RESUMO

Human mitochondrial Hsp60 (mtHsp60) is a class I chaperonin, 51% identical in sequence to the prototypical E. coli chaperonin GroEL. mtHsp60 maintains the proteome within the mitochondrion and is associated with various neurodegenerative diseases and cancers. The oligomeric assembly of mtHsp60 into heptameric ring structures that enclose a folding chamber only occurs upon addition of ATP and is significantly more labile than that of GroEL, where the only oligomeric species is a tetradecamer. The lability of the mtHsp60 heptamer provides an opportunity to detect and visualize lower-order oligomeric states that may represent intermediates along the assembly/disassembly pathway. Using cryo-electron microscopy we show that, in addition to the fully-formed heptamer and an "inverted" tetradecamer in which the two heptamers associate via their apical domains, thereby blocking protein substrate access, well-defined lower-order oligomeric species, populated at less than 6% of the total particles, are observed. Specifically, we observe open trimers, tetramers, pentamers and hexamers (comprising ∼4% of the total particles) with rigid body rotations from one subunit to the next within ∼1.5-3.5° of that for the heptamer, indicating that these may lie directly on the assembly/disassembly pathway. We also observe a closed-ring hexamer (∼2% of the particles) which may represent an off-pathway species in the assembly/disassembly process in so far that conversion to the mature heptamer would require the closed-ring hexamer to open to accept an additional subunit. Lastly, we observe several classes of tetramers where additional subunits characterized by fuzzy electron density are caught in the act of oligomer extension.


Assuntos
Chaperonina 60/química , Proteínas Mitocondriais/química , Microscopia Crioeletrônica , Humanos , Multimerização Proteica
12.
Sci Rep ; 11(1): 18241, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521893

RESUMO

The GroEL-GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL-GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.


Assuntos
Difosfato de Adenosina/química , Chaperonina 10/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
13.
Sci Rep ; 11(1): 14809, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285302

RESUMO

Human mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded ß sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the ß sheet and indirectly shorten ß strands by disengaging the backbones of the flanking residues from hydrogen bonding in the ß strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit ß sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.


Assuntos
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas da Gravidez/química , Proteínas da Gravidez/metabolismo , Fatores Supressores Imunológicos/química , Fatores Supressores Imunológicos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína
14.
J Phys Chem Lett ; 12(24): 5723-5730, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34129341

RESUMO

The GroE molecular chaperone system is a critical protein machine that assists the folding of substrate proteins in its cavity. Water in the cavity is suspected to play a role in substrate protein folding, but the mechanism is currently unknown. Herein, we report measurements of water dynamics in the equatorial and apical domains of the GroEL cavity in the apo and football states, using site-specific tryptophanyl mutagenesis as an intrinsic optical probe with femtosecond resolution combined with molecular dynamics simulations. We observed clearly different water dynamics in the two domains with a slowdown of the cavity water from the apical to equatorial region in the football state. The results suggest that the GroEL cavity provides a unique water environment that may facilitate substrate protein folding.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Água/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cinética , Modelos Moleculares , Domínios Proteicos
15.
J Biol Chem ; 296: 100744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957121

RESUMO

This review contains a personal account of the role played by the PDB in the development of the field of molecular chaperones and protein homeostasis, from the viewpoint of someone who experienced the concurrent advances in the structural biology, electron microscopy, and chaperone fields. The emphasis is on some key structures, including those of Hsp70, GroEL, Hsp90, and small heat shock proteins, that were determined as the molecular chaperone concept and systems for protein quality control were emerging. These structures were pivotal in demonstrating how seemingly nonspecific chaperones could assist the specific folding pathways of a variety of substrates. Moreover, they have provided mechanistic insights into the ATPase machinery of complexes such as GroEL/GroES that promote unfolding and folding and the disaggregases that extract polypeptides from large aggregates and disassemble amyloid fibers. The PDB has provided a framework for the current success in curating, evaluating, and distributing structural biology data, through both the PDB and the EMDB.


Assuntos
Chaperonina 10 , Chaperonina 60 , Bases de Dados de Proteínas , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Proteólise , Animais , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
16.
Protein Pept Lett ; 28(9): 1071-1082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820508

RESUMO

BACKGROUND: Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE: A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS: Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS: The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION: The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.


Assuntos
Bactérias , Infecções Bacterianas , Proteínas de Bactérias , Chaperonina 60 , Filogenia , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Humanos
17.
Chembiochem ; 22(11): 1985-1991, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33644966

RESUMO

Huntington's disease arises from polyQ expansion within the exon-1 region of huntingtin (httex1 ), resulting in an aggregation-prone protein that accumulates in neuronal inclusion bodies. We investigate the interaction of various httex1 constructs with the bacterial analog (GroEL) of the human chaperonin Hsp60. Using fluorescence spectroscopy and electron and atomic force microscopy, we show that GroEL inhibits fibril formation. The binding kinetics of httex1 constructs with intact GroEL and a mini-chaperone comprising the apical domain is characterized by relaxation-based NMR measurements. The lifetimes of the complexes range from 100 to 400 µs with equilibrium dissociation constants (KD ) of ∼1-2 mM. The binding interface is formed by the N-terminal amphiphilic region of httex1 (which adopts a partially helical conformation) and the H and I helices of the GroEL apical domain. Sequestration of monomeric httex1 by GroEL likely increases the critical concentration required for fibrillization.


Assuntos
Chaperonina 60/metabolismo , Proteína Huntingtina/metabolismo , Peptídeos/metabolismo , Chaperonina 60/química , Humanos , Proteína Huntingtina/química , Microscopia de Força Atômica , Peptídeos/química , Espectrometria de Fluorescência
18.
J Struct Biol ; 213(2): 107727, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753204

RESUMO

Cryo-electron tomography provides the opportunity for unsupervised discovery of endogenous complexes in situ. This process usually requires particle picking, clustering and alignment of subtomograms to produce an average structure of the complex. When applied to heterogeneous samples, template-free clustering and alignment of subtomograms can potentially lead to the discovery of structures for unknown endogenous complexes. However, such methods require scoring functions to measure and accurately rank the quality of aligned subtomogram clusters, which can be compromised by contaminations from misclassified complexes and alignment errors. Here, we provide the first study to assess the effectiveness of more than 15 scoring functions for evaluating the quality of subtomogram clusters, which differ in the amount of structural misalignments and contaminations due to misclassified complexes. We assessed both experimental and simulated subtomograms as ground truth data sets. Our analysis showed that the robustness of scoring functions varies largely. Most scores were sensitive to the signal-to-noise ratio of subtomograms and often required Gaussian filtering as preprocessing for improved performance. Two scoring functions, Spectral SNR-based Fourier Shell Correlation and Pearson Correlation in the Fourier domain with missing wedge correction, showed a robust ranking of subtomogram clusters without any preprocessing and irrespective of SNR levels of subtomograms. Of these two scoring functions, Spectral SNR-based Fourier Shell Correlation was fastest to compute and is a better choice for handling large numbers of subtomograms. Our results provide a guidance for choosing an accurate scoring function for template-free approaches to detect complexes from heterogeneous samples.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Chaperonina 10/química , Chaperonina 60/química , Bases de Dados de Proteínas , Distribuição Normal , Ribossomos/química , Razão Sinal-Ruído
19.
Sci Rep ; 11(1): 5930, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723304

RESUMO

Plasmodium falciparum harbors group 1 and group 2 chaperonin systems to mediate the folding of cellular proteins in different cellular locations. Two distinct group 1 chaperonins operate in the organelles of mitochondria and apicoplasts, while group 2 chaperonins function in the cytosol. No structural information has been reported for any chaperonin from plasmodium. In this study, we describe the crystal structure of a double heptameric ring Plasmodium falciparum mitochondrial chaperonin 60 (Cpn60) bound with ATP, which differs significantly from any known crystal structure of chaperonin 60. The structure likely represents a unique intermediate state during conformational conversion from the closed state to the opened state. Three of the seven apical domains are highly dynamic while the equatorial domains form a stable ring. The structure implies large movements of the apical domain in the solution play a role in nucleotide-dependent regulation of substrate binding and folding. A unique 26-27 residue insertion in the equatorial domain of Plasmodium falciparum mitochondrial chaperonin greatly increases both inter-ring and intra-ring subunit-subunit interactions. The present structure provides new insights into the mechanism of Cpn60 in chaperonin assembly and function.


Assuntos
Trifosfato de Adenosina/química , Chaperonina 60/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Protozoários/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cristalografia por Raios X , Conformação Molecular , Plasmodium falciparum/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
20.
Cell Stress Chaperones ; 26(3): 515-525, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629254

RESUMO

Hyperinflammation distinguishes COVID-19 patients who develop a slight disease or none, from those progressing to severe and critical conditions. CIGB-258 is a therapeutic option for the latter group of patients. This drug is an altered peptide ligand (APL) derived from the cellular stress protein 60 (HSP60). In preclinical models, this peptide developed anti-inflammatory effects and increased regulatory T cell (Treg) activity. Results from a phase I clinical trial with rheumatoid arthritis (RA) patients indicated that CIGB-258 was safe and reduced inflammation. The aim of this study was to examine specific biomarkers associated with hyperinflammation, some cytokines linked to the cytokine storm granzyme B and perforin in a cohort of COVID-19 patients treated with this peptide. All critically ill patients were under invasive mechanical ventilation and received the intravenous administration of 1 or 2 mg of CIGB-258 every 12 h. Seriously ill patients were treated with oxygen therapy receiving 1 mg of CIGB-258 every 12 h and all patients recovered from their severe condition. Biomarker levels associated with hyperinflammation, such as interleukin (IL)-6, IL-10, tumor necrosis factor (TNF-α), granzyme B, and perforin, significantly decreased during treatment. Furthermore, we studied the ability of CIGB-258 to induce Tregs in COVID-19 patients and found that Tregs were induced in all patients studied. Altogether, these results support the therapeutic potential of CIGB-258 for diseases associated with hyperinflammation. Clinical trial registry: RPCEC00000313.


Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Chaperonina 60/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios/química , COVID-19/sangue , COVID-19/complicações , Chaperonina 60/química , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/complicações , Feminino , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-10/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...