Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18806, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138231

RESUMO

Manipulating the rhizosphere microbiome to enhance plant stress tolerance is an environmentally friendly technology and a renewable resource to restore degraded environments. Here we suggest a sustainable bioremediation strategy on the example of Stebnyk mine tailings storage. We consider Salicornia europaea rhizosphere community, and the ability of the phytoremediation plant Salix viminalis to recruit its beneficial microbiome to mediate the pollution stress at the Stebnyk mine tailings storage. The tailings contain large amounts of brine salts and heavy metals that contaminate the ground water and surrounding areas, changing soil biogeochemistry and causing increased erosion. The species richness of the endophytic bacterial community of S. viminalis roots was assessed based on observed OTUs, Shannon-InvSimpson, and evenness index. Our results obtained using the plant-based enrichment strategy show that biodiversity was decreased across the contamination zones and that S. europaea supplementation significantly increased the species richness. Our results also indicate that the number of dominating bacteria was not changed across zones in both S. europaea-treated and untreated bacterial populations, and that the decrease in richness was mainly caused by the low abundant bacterial OTUs. The importance of selecting the bioremediation strains that are likely to harbor a reservoir of genetic traits that aid in bioremediation function from the target environment is discussed.


Assuntos
Biodegradação Ambiental , Biodiversidade , Chenopodiaceae , Microbiota , Rizosfera , Microbiologia do Solo , Chenopodiaceae/microbiologia , Salix/microbiologia , Poluentes do Solo/metabolismo , Raízes de Plantas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Mineração
2.
Curr Microbiol ; 81(10): 310, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152363

RESUMO

A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped, designated strain CAU 1642 T, was isolated from a Salicornia herbacea collected from a tidal flat in the Yellow Sea. Strain CAU 1642 T grew optimally at pH 8.0 and 30 °C. The highest 16S rRNA gene sequence similarity was 97.25%, with Pseudomarinomonas arenosa CAU 1598 T, and phylogenetic analysis indicated that strain CAU 1642 T belongs to the genus Pseudomarinomonas. The major cellular fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0). Ubiquinone-8 was the major respiratory quinone. The draft genome of strain CAU 1642 T was 4.5 Mb, with 68.7 mol% of G + C content. The phylogenetic, phenotypic, and chemotaxonomic analysis data reveal strain CAU 1642 T to be of a novel genus in the family Lysobacteraceae, with the proposed name Pseudomarinomonas salicorniae sp. nov. with type strain CAU 1642 T (= KCTC 92084 T = MCCC 1K07085T).


Assuntos
Composição de Bases , Chenopodiaceae , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Chenopodiaceae/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Quinonas/análise , Ubiquinona/química , Ubiquinona/análogos & derivados , Genoma Bacteriano
3.
Mar Pollut Bull ; 207: 116824, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128233

RESUMO

The microorganism in rhizosphere systems has the potential to regulate the migration of arsenic (As) in coastal tidal flat wetlands. This study investigates the microbial community in the iron plaque and rhizosphere soils of Spartina alterniflora (S. alterniflora) and Suaeda salsa (S. salsa), as two common coastal tidal flat wetland plants in China, and determines the impact of the As and Fe redox bacteria on As mobility using field sampling and 16S rDNA high-throughput sequencing. The results indicated that As bound to crystalline Fe in the Fe plaque of S. salsa in high tidal flat. In the Fe plaque, there was a decrease in the presence of Fe redox bacteria, while the presence of As redox bacteria increased. Thus, the formation of Fe plaque proved advantageous in promoting the growth of As redox bacteria, thereby aiding in the mobility of As from rhizosphere soils to the Fe plaque. As content in the Fe plaque and rhizosphere soils of S. alterniflora was found to be higher than that of S. salsa. In the Fe plaque, As/Fe-reducing bacteria in S. alterniflora, and As/Fe-oxidizing bacteria in S. salsa significantly affected the distribution of As in rhizosphere systems. S. alterniflora has the potential to be utilized for wetland remediation purposes.


Assuntos
Arsênio , Chenopodiaceae , Ferro , Poaceae , Rizosfera , Microbiologia do Solo , Áreas Alagadas , Arsênio/análise , China , Chenopodiaceae/microbiologia , Poaceae/microbiologia , Bactérias , Solo/química , Poluentes Químicos da Água/análise
4.
Chemosphere ; 362: 142918, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043273

RESUMO

Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.


Assuntos
Carbono , Carvão Vegetal , Micorrizas , Microbiologia do Solo , Solo , Áreas Alagadas , Carvão Vegetal/química , Carbono/metabolismo , Solo/química , Micorrizas/fisiologia , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiologia , Fotossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
5.
Plant Physiol Biochem ; 214: 108921, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991594

RESUMO

The use of halophytes in conjunction with arbuscular mycorrhizal (AM) fungi has been found to enhance the removal efficacy of heavy metals and salts in heavy metals contaminated saline soil. The mechanisms of AM fungi on promoting halophyte growth and regulating metabolism remain unclear. In this study, combinations of 0 g kg-1 NaCl and 3 mg kg-1 Cd (S0Cd3), 6 g kg-1 NaCl and 3 mg kg-1 Cd (S6Cd3), and 12 g kg-1 NaCl and 3 mg kg-1 Cd (S12Cd3) were employed to explore the impact of Funneliformis mosseae on the growth and metabolism of Suaeda salsa. The results showed that AM fungi increased the biomass and the P, K+, Ca2+, and Mg2+ accumulations, reduced the Cd and Na+ concentrations in S0Cd3 and S6Cd3, and increased the Cd concentrations in S12Cd3. AM fungi inoculation reduced the Cd and Na+ transfer factors and increased the Cd and Na+ accumulations in S6Cd3. The metabolomics of S6Cd3 showed that AM fungi upregulated the expression of 5-hydroxy-L-tryptophan and 3-indoleacid acid in tryptophan metabolism, potentially acting as crucial antioxidants enabling plants to actively cope with abiotic stresses. AM fungi upregulated the expression of arbutin in glycolysis process, enhancing the plants' osmoregulation capacity. AM fungi upregulated the expression of 2-hydroxycinnamic acid in phenylalanine metabolism and dopaquinone in tyrosine metabolism. These two metabolites help effectively remove reactive oxygen species. Correspondingly, AM fungi decreased MDA content and increased soluble sugar content. These results indicate that AM fungi improve the stress resistance of S. salsa by increasing nutrient uptake and regulating physiological and metabolic changes.


Assuntos
Aminoácidos , Cádmio , Chenopodiaceae , Glicólise , Micorrizas , Reguladores de Crescimento de Plantas , Micorrizas/fisiologia , Micorrizas/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiologia , Chenopodiaceae/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Aminoácidos/metabolismo , Estresse Salino , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/microbiologia , Fungos
6.
Sci Rep ; 14(1): 16737, 2024 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033227

RESUMO

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A. macrostachyum. Three bacteria (Providencia rettgeri DW3, Bacillus licheniformis DW4, and Salinicoccus sesuvii DW5) were isolated for the first time from T. nilotica, S. pruinosa and S. pruinosa, respectively. Paenalcaligenes suwonensis DW7 was isolated for the first time from A. macrostachyum. These plant-associated halotolerant bacteria exhibited growth-promoting activities, including phosphate solubilization, nitrogen fixation, and production of bioactive compounds, i.e., ammonia, phytohormones, hydrogen cyanide, siderophores, and exopolysaccharides. A controlled laboratory experiment was conducted to reduce the detrimental impact of soil salinity. Vicia faba seedlings were inoculated individually or in mixtures by the five most effective plant-associated halotolerant bacteria to reduce the impact of salt stress and improve growth parameters. The growth parameters were significantly reduced due to the salinity stress in the control samples, compared to the experimental ones. The unprecedented novelty of our findings is underscored by the demonstrable efficacy of co-inoculation with these five distinct bacterial types as a pioneering bio-approach for countering the deleterious effects of soil salinity on plant growth. This study thus presents a remarkable contribution to the field of plant science and offers a promising avenue for sustainable agriculture in saline environments.


Assuntos
Salinidade , Vicia faba , Vicia faba/crescimento & desenvolvimento , Vicia faba/microbiologia , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Fixação de Nitrogênio , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Tamaricaceae/microbiologia , Tamaricaceae/crescimento & desenvolvimento , Chenopodiaceae/microbiologia , Chenopodiaceae/crescimento & desenvolvimento , Microbiologia do Solo , Tolerância ao Sal , Fosfatos/metabolismo
7.
Sci Total Environ ; 942: 173775, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844238

RESUMO

The rhizosphere environment of plants, which harbors halophilic bacterial communities, faces significant challenges in coping with environmental stressors, particularly saline soil properties. This study utilizes a high-throughput 16S rRNA gene-based amplicon sequencing to investigate the variations in bacterial community dynamics in rhizosphere soil (RH), root surface soil (RS), root endophytic bacteria (PE) compartments of Suaeda salsa roots, and adjoining soils (CK) across six locations along the eastern coast of China: Nantong (NT), Yancheng (YC), Dalian (DL), Tianjin (TJ), Dongying (DY), and Qingdao (QD), all characterized by chloride-type saline soil. Variations in the physicochemical properties of the RH compartment were also evaluated. The results revealed significant changes in pH, electrical conductivity, total salt content, and ion concentrations in RH samples from different locations. Notably, the NT location exhibited the highest alkalinity and nitrogen availability. The pH variations were linked to HCO3- accumulation in S. salsa roots, while salinity stress influenced soil pH through H+ discharge. Despite salinity stress, enzymatic activities such as catalase and urease were higher in soils from various locations. The diversity and richness of bacterial communities were higher in specific locations, with Proteobacteria dominating PE samples from the DL location. Additionally, Vibrio and Marinobacter were prevalent in RH samples. Significant correlations were found between soil pH, salinity, nutrient content, and the abundance and diversity of bacterial taxa in RH samples. Bioinformatics analysis revealed the prevalence of halophilic bacteria, such as Bacillus, Halomonas, and Streptomyces, with diverse metabolic functions, including amino acid and carbohydrate metabolisms. Essential genes, such as auxin response factor (ARF) and GTPase-encoding genes, were abundant in RH samples, suggesting adaptive strategies for harsh environments. Likewise, proline/betaine transport protein genes were enriched, indicating potential bioremediation mechanisms against high salt stress. These findings provide insight into the metabolic adaptations facilitating resilience in saline ecosystems and contribute to understanding the complex interplay between soil conditions, bacterial communities, and plant adaptation.


Assuntos
Bactérias , Chenopodiaceae , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo , China , Chenopodiaceae/microbiologia , Raízes de Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Rizosfera , Solo/química , Salinidade , Microbiota , Sequenciamento de Nucleotídeos em Larga Escala
8.
Microb Pathog ; 191: 106677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705217

RESUMO

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Assuntos
Chenopodiaceae , Endófitos , Probióticos , Streptomyces , Vibrio , Animais , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Chenopodiaceae/microbiologia , Probióticos/farmacologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Streptomyces/fisiologia , Streptomyces/isolamento & purificação , Streptomyces/genética , Penaeidae/microbiologia , RNA Ribossômico 16S/genética , Antibiose , Vibrioses/microbiologia , Vibrioses/veterinária , Vibrioses/prevenção & controle , Salinidade , Larva/microbiologia , DNA Bacteriano/genética , Filogenia
9.
J Nat Prod ; 87(4): 733-742, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38573876

RESUMO

Nine bacteria were isolated from the episphere of Suaeda maritima (L.) Dumort. Among them, the bacterial strain YSL2 displayed the highest antimicrobial activity on agar plates and exhibited significant novelty compared with other bacteria based on 16S rRNA analysis. Consequently, Nocardiopsis maritima YSL2T was subjected to phenotypic characterization and whole-genome sequencing. Phylogenetic analysis revealed its close association with Nocardiopsis aegyptia SNG49T. Furthermore, genomic analysis of strain YSL2T revealed the presence of various gene clusters, indicating its potential for producing antimicrobial secondary metabolites. Upon cultivation on a large scale, maritiamides A and B (1 and 2) were isolated and characterized as cyclic hexapeptides based on nuclear magnetic resonance, ultraviolet, infrared, and mass spectrometric data. The absolute configurations of the amino acid residues in the maritiamides were determined through chiral derivatization, utilizing FDAA and GITC. Maritiamides 1 and 2 exhibited promising antibacterial activities against Staphylococcus epidermidis and weakly inhibited the growth of Escherichia coli and Pseudomonas fluorescens.


Assuntos
Antibacterianos , Nocardiopsis , Antibacterianos/farmacologia , Antibacterianos/química , Chenopodiaceae/microbiologia , Escherichia coli/efeitos dos fármacos , Genômica , Metabolômica , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nocardiopsis/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Filogenia , Pseudomonas/efeitos dos fármacos , RNA Ribossômico 16S/genética , Staphylococcus/efeitos dos fármacos
10.
Microbiol Spectr ; 12(6): e0005624, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687070

RESUMO

The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata. Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 (Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant's survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications.IMPORTANCEThe current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render "unsuitable" soils farmable.


Assuntos
Bactérias , Clima Desértico , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Desenvolvimento Vegetal , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Microbiota , Solo/química , Biodiversidade , Chenopodiaceae/microbiologia , Chenopodiaceae/crescimento & desenvolvimento
11.
mSphere ; 9(5): e0022624, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682927

RESUMO

Soil microbial community composition and diversity are often affected by nutrient enrichment, which may influence soil microbes to affect nutrient cycling and plant community structure. However, the response of soil bacteria to nitrogen (N) and phosphorus (P) addition and whether it is influenced by plants remains unclear. By 16S rRNA sequencing, we investigated the response of the rhizosphere and bulk soil bacterial communities of different halophytes (salt-rejecting, salt-absorbing, and salt-secreting plant) in the Yellow River Delta to short-term N and P addition. The response of rhizosphere bacterial diversity to N and P addition was opposite in Phragmites communis and Suaeda salsa. N addition increased the rhizosphere soil bacterial α-diversity of S. salsa and Aeluropus sinensis, while P addition decreased the rhizosphere bacterial α-diversity bacteria of S. salsa. The N and P addition had a weak effect on the rhizosphere bacterial community composition and a significant effect on the bulk soil bacterial community composition of halophytes. The S. salsa and P. communis bulk soil bacterial community were mainly influenced by P addition, while it was influenced by N addition in A. sinensis. N and P addition reduced the difference in bacterial community composition between the two types of soil. N and P addition increased the eutrophic taxa (Proteobacteria and Bacteroidetes) and decreased the oligotrophic taxa (Acidobacteria). Redundancy analysis showed that soil organic matter, salt, and total N content had significant effects on the bacterial community composition. The results clarify that the response of soil bacterial communities to N and P additions is inconsistent across the three halophyte soils, and the effect of plant species on the bacterial community was stronger than short-term N and P addition. IMPORTANCE: The bulk soil bacterial community was more affected by nutrient addition. Nitrogen (N) and phosphorus (P) have different effects on bacterial community. Soil organic matter is a key factor influencing the response of bacterial community to nutrient addition. N and P influence on bacterial community changes with plants.


Assuntos
Bactérias , Nitrogênio , Fósforo , RNA Ribossômico 16S , Rizosfera , Plantas Tolerantes a Sal , Microbiologia do Solo , Fósforo/análise , Fósforo/metabolismo , Nitrogênio/metabolismo , Nitrogênio/análise , Plantas Tolerantes a Sal/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , RNA Ribossômico 16S/genética , Microbiota , Chenopodiaceae/microbiologia , Solo/química , Biodiversidade
12.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298930

RESUMO

The genus Anabasis is a member of the family Amaranthaceae (former name: Chenopodiaceae) and includes approximately 102 genera and 1400 species. The genus Anabasis is one of the most significant families in salt marshes, semi-deserts, and other harsh environments. They are also renowned for their abundance in bioactive compounds, including sesquiterpenes, diterpenes, triterpenes, saponins, phenolic acids, flavonoids, and betalain pigments. Since ancient times, these plants have been used to treat various diseases of the gastrointestinal tract, diabetes, hypertension, and cardiovascular diseases and are used as an antirheumatic and diuretic. At the same time, the genus Anabasis is very rich in biologically active secondary metabolites that exhibit great pharmacological properties such as antioxidant, antibacterial, antiangiogenic, antiulcer, hypoglycemic, hepatoprotective, antidiabetic, etc. All of the listed pharmacological activities have been studied in practice by scientists from different countries and are presented in this review article to familiarize the entire scientific community with the results of these studies, as well as to explore the possibilities of using four plant species of the genus Anabasis as medicinal raw materials and developing medicines based on them.


Assuntos
Amaranthaceae , Chenopodiaceae , Humanos , Chenopodiaceae/microbiologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Etnofarmacologia
13.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841232

RESUMO

AIM: The objective of the work was to assess the effect of biostimulation with selected plant growth-promoting bacteria on growth and metabolite profile of Salicornia europaea. METHODS AND RESULTS: Salicornia europaea seeds were inoculated with different combinations of plant growth-promoting bacteria Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20. Plants germinated from inoculated seeds were grown either in laboratory conditions or in a saline crop field. Fresh and dry weight were determined at the end of the experiment, for biomass quantification. The microbiological quality of fresh shoots for human consumption as salad greens was assessed, and the persistence of the inoculated strains in the plant rhizosphere was confirmed by next-generation sequencing (Illumina) of the 16S rDNA gene. The primary metabolite profile of biostimulated plants was characterized by GC-TOF-MS.In laboratory conditions, inoculation with the two strains Br. casei EB3 and Ps. oryzihabitans RL18 caused the most significant increase in biomass production (fresh and dry weight), and caused a shift in the central metabolic pathways of inoculated plants toward amino acid biosynthesis. In the field experiment, no significant biostimulation effect was detected with any of the tested inoculants. Seed inoculation had no significant effect on the microbiological quality of the edible parts. The persistence of inoculants was confirmed in both experiments. CONCLUSIONS: Manipulation of the plant microbiome can trigger primary metabolic reconfiguration and modulate the plant metabolism while promoting plant growth.


Assuntos
Bactérias , Chenopodiaceae , Humanos , Desenvolvimento Vegetal , Sementes , Produtos Agrícolas , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo
14.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36251750

RESUMO

A 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing, Gram-stain-negative, strictly aerobic, non-motile, yellow-reddish, oval-shaped bacterial strain, designated M5D2P5T, was isolated from a root of Kalidium cuspidatum, in Tumd Right Banner, Inner Mongolia, PR China. M5D2P5T grew at 10-40 °C (optimum 30-35 °C), pH 5.0-10.0 (optimum pH 8.0) and with 0-7% NaCl (optimum 3.0 %). The strain was positive for catalase and oxidase. The phylogenetic trees based on 16S rRNA gene sequences indicated that M5D2P5T clustered with Acuticoccus yangtzensis JL1095T, and shared 98.0, 97.3, 97.2, 96.9 and less than 96.9 % 16S rRNA gene similarities to A. yangtzensis JL1095T, Acuticoccus mangrovi B2012T, Acuticoccus sediminis PTG4-2T, Acuticoccus kandeliae J103T, and all the other type strains, respectively. However, the phylogenomic tree showed it clustered with A. kandeliae J103T. M5D2P5T contained Q-10 as the major respiratory quinone, as well as two minor respiratory quinones, Q-7 and Q-8. Its major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified glycolipid, and four unidentified lipids. The genomic DNA G+C content was 66.5 %. The digital DNA-DNA hybridization score and the average nucleotide identity based on blast values of M5D2P5T to A. yangtzensis JL1095T, A. kandeliae J103T, A. mangrovi B2012T, and A. sediminis PTG4-2T, were 20.8, 23.7, 20.7, and 21.5 %, and 73.3, 79.5, 74.4, and 73.7 %, respectively. The phylogenetic and phenotypic characteristics allowed the discrimination of M5D2P5T from its phylogenetic relatives. The novel species Acuticoccus kalidii sp. nov. is therefore proposed, and the type strain is M5D2P5T (=CGMCC 1.19149T=KCTC 92132T).


Assuntos
Chenopodiaceae , Endófitos , Técnicas de Tipagem Bacteriana , Composição de Bases , Cardiolipinas , Catalase/genética , Chenopodiaceae/microbiologia , DNA Bacteriano/genética , Endófitos/genética , Ácidos Graxos/química , Glicolipídeos , Nucleotídeos , Fosfatidiletanolaminas , Fosfolipídeos/química , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio
15.
Arch Microbiol ; 204(9): 561, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978053

RESUMO

Bacteria have the abilities of salt tolerant, mineral weathering and plant growth promoting can promote the growth of plants in saline lands. However, few reports of the mineral weathering capacity of halophilic-endophytic bacteria, raising the question of whether the halophilic-endophytic weathering bacteria are fundamentally distinct from those in plants communities. In this study, we isolated and characterized halophilic bacterial strains from the roots and leaves of Suaeda salsa and Spartina anglica with respect to their mineral weathering pattern, role in the promoting plant growth, community structure, and their changes in these two plants. Using improved Gibbson medium, we obtained 156 halophilic bacterial strains, among which 92 and 64 strains were isolated from the S. salsa and S. anglica samples, respectively. The rock weathering patterns of the isolates were characterized using batch cultures that measure the quantity of Si, Al, K, and Fe released from crystal biotite under aerobic conditions. Significantly, the biomass and capacity of the mineral weathering of the halophilic-endophytic bacteria were different in the plants. The abundance of the halophilic-endophytic bacterials in the Suaeda salsa was significantly greater than Spartina anglica, whereas the mineral weathering bacterial in the Suaeda salsa was similar to the Spartina anglica. Furthermore, the proportion of plant growth-promoting bacteria in the Suaeda salsa was higher than Spartina anglica. Phylogenetic analyses show that the weathered minerals were inhabited by specific functional groups of bacteria (Halomonas, Acinetobacter, Burkholderia, Alcaligenes, Sphingobium, Arthrobacter, Chryseobacterium, Paenibacillus, Microbacterium, Ensifer, Ralstonia and Enterobacter) that contribute to the mineral weathering. The changes in halophilic endophytes weathering communities between the two plants were attributable not only to major bacterial groups but also to a change in the minor population structure.


Assuntos
Arthrobacter , Chenopodiaceae , Chenopodiaceae/microbiologia , Minerais , Filogenia , Poaceae , Microbiologia do Solo
16.
Bioengineered ; 13(5): 12475-12488, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35593105

RESUMO

Root-related or endophytic microbes in halophytes play an important role in adaptation to extreme saline environments. However, there have been few comparisons of microbial distribution patterns in different tissues associated with halophytes. Here, we analyzed the bacterial communities and distribution patterns of the rhizospheres and tissue endosphere in two Suaeda species (S. salsa and S. corniculata Bunge) using the 16S rRNA gene sequencing. The results showed that the bacterial abundance and diversity in the rhizosphere were significantly higher than that of endophytic, but lower than that of bulk soil. Microbial-diversity analysis showed that the dominant phyla of all samples were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Firmicutes, among which Proteobacteria were extremely abundant in all the tissue endosphere. Heatmap and Linear discriminant analysis Effect Size (LEfSe) results showed that there were notable differences in microbial community composition related to plant compartments. Different networks based on plant compartments exhibited distinct topological features. Additionally, the bulk soil and rhizosphere networks were more complex and showed higher centrality and connectedness than the three endosphere networks. These results strongly suggested that plant compartments, and not species, affect microbiome composition.


Assuntos
Chenopodiaceae , Microbiota , Bactérias/genética , Chenopodiaceae/genética , Chenopodiaceae/microbiologia , Microbiota/genética , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Plantas Tolerantes a Sal/genética , Solo , Microbiologia do Solo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35550242

RESUMO

Three strains of members of the family Bacillaceae, which can inhibit the growth of some Gram-stain-positive strains, designated M4U3P1T, HD4P25T and RD4P76T, were isolated from Suaeda salsa halophytes in Baotou, Inner Mongolia, PR China. A phylogenetic analysis based on the 16S rRNA gene and the whole genome sequences revealed that HD4P25T clustered with Cytobacillus luteolus YIM 93174T with a similarity of 98.4 %, and RD4P76T shared the highest similarity of 16S rRNA gene with Bacillus mesophilus SA4T (97.5 %). M4U3P1T clustered with strains of genera Salipaludibacillus and Alkalicoccus based on whole-genome sequence analyses, but its 16S rRNA gene had the highest similarity to 'Evansella tamaricis' EGI 80668 (96.1 %). The average nucleotide's identity by blast (ANIb) and digital DNA-DNA hybridization (dDDH) values of the three isolated strains to their close relatives were well below the threshold value for identifying a novel species.On the basis of the phylogenetic, physiological and phenotypic results, Paenalkalicoccus suaedae gen. nov., sp. nov. [type strain M4U3P1T (=CGMCC 1.17076T=JCM 33851T)], Cytobacillus suaedae sp. nov. [type strain HD4P25T (=CGMCC 1.18651T =JCM 34524T)], and Bacillus suaedae sp. nov. [type strain RD4P76T (=CGMCC 1.18659T=JCM 34525T)] were proposed, respectively. All three species are ubiquitous in the bulk saline-alkaline soils, but only the species represented by strain RD4P76T was widely distributed in the rhizosphere soil, the above-ground part and the roots of S. salsa. The species represented by M4U3P1T can be detected in the roots of S. salsa, and rarely detected in the above-ground parts of S. salsa. The species represented by HD4P25T was rarely detected in the interior of S. salsa. The three strains could inhibit some of the Gram-stain-positive bacteria (i.e. members of the genera Planococcus, Zhihengliuella and Sanguibacter) in the saline-alkali soil. A genomic analysis of these three strains revealed that they can synthesize different antagonistic compounds, such as aminobenzoate and bacitracin or subtilisin.


Assuntos
Bacillaceae , Bacillus , Chenopodiaceae , Bacillaceae/genética , Bacillus/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Chenopodiaceae/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal , Análise de Sequência de DNA , Solo
18.
Curr Microbiol ; 79(7): 198, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595934

RESUMO

A Gram-stain-positive, facultatively anaerobic, non-sporulating, motile with single polar flagellum, rod-shaped, indole-3-acetic acid (IAA)-producing bacterium, named M4U5P12T, was isolated from a shoot of Kalidium cuspidatum, Inner Mongolia, China. Strain M4U5P12T grew at pH 6.0-11.0 (optimum 7.5), 4-40 °C (optimum 25 °C), and in the presence of 0-15% (w/v) NaCl (optimum 4%). Positive for catalase, urease, methyl red (M.R.) reaction, and hydrolysis of starch; and negative for oxidase, Voges-Proskauer (V-P) test, and hydrolysis of cellulose. The phylogenetic trees based on the 16S rRNA gene sequences and the whole genome sequences both revealed that it clustered with Marinilactibacillus piezotolerans JCM 12337T (99.3%) and Marinilactibacillus psychrotolerans M13-2T (99.1%). The dDDH and ANIb values of strain M4U5P12T to M. piezotolerans DSM 16108T and M. psychrotolerans M13-2T were 19.3 and 18.9%, and 74.3 and 74.0%, respectively. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, and two unidentified lipids. The major fatty acids were C16:0, C18:1 ω9c, C16:1 ω9c, and C15:1 ω5c. The genomic DNA G + C content was 37.3%. On the basis of physiological, phenotypic, and phylogenetic characteristics, strain M4U5P12T should be classified as a novel species. Therefore, Marinilactibacillus kalidii sp. nov. is proposed, and the type strain is M4U5P12T (= CGMCC 1.17696T = KCTC 43247T).


Assuntos
Chenopodiaceae , Endófitos , Técnicas de Tipagem Bacteriana , Chenopodiaceae/microbiologia , China , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Indolacéticos , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal , Análise de Sequência de DNA
19.
Artigo em Inglês | MEDLINE | ID: mdl-35532967

RESUMO

A bacterial strain, designated YZJH907-2T, was isolated from the stem of Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, Xinjiang, PR China. Cells of strain YZJH907-2T were Gram-stain-positive, aerobic and rod-shaped. They formed white or colourless circular colonies with smooth convex surfaces. Strain YZJH907-2T grew at 4-50 °C (optimum, 28-30 °C), pH 7.0-10.0 (optimum, pH 8.0-9.0) and with 0-10 % (w/v) NaCl (optimum, 3-7 %). The genomic DNA G+C content of strain YZJH907-2T was 38.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that the strain was most closely related to Bacillus alcalophilus DSM 485T (97.37 %), Bacillus kiskunsagensis B16-24T (96.87 %) and Bacillus bogoriensis LBB3T (96.71 %). Average nucleotide identity values between YZJH907-2T and B. alcalophilus DSM 485Tand B. bogoriensis LBB3T were 69.2 and 69.0 %, respectively. Digital DNA-DNA hybridization values of YZJH907-2T with B. alcalophilus DSM 485T and B. bogoriensis LBB3T were 19.6 and 20.4 %, respectively. The cell wall of strain YZJH907-2T contained meso-diaminopimelic acid, and the major and secondary isoprenoid quinones were MK-7 and MK-5, respectively. Results of fatty acids showed that anteiso-C15 : 0, iso-C15 : 0 and C16 : 0 were the predominant cellular fatty acids. Two-dimensional thin-layer chromatography analysis indicated that the polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. Based on the genomic, phylogenetic and phenotypic analyses, strain YZJH907-2T represented a novel species of the genus Bacillus, and thus the name Bacillus suaedae sp. nov. is proposed. The type strain is YZJH907-2T (=CGMCC 1.18763T=KCTC 43335T).


Assuntos
Bacillus , Chenopodiaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , Chenopodiaceae/microbiologia , China , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Mar Drugs ; 20(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35323494

RESUMO

Six new ß-resorcylic acid derivatives (1-5 and 7) were isolated from a halophyte-associated fungus, Colletotrichum gloeosporioides JS0419, together with four previously reported ß-resorcylic acid lactones (RALs). The relative and absolute stereochemistry of 1 was completely established by a combination of spectroscopic data and chemical reactions. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR data. Notably, compounds 1-3 had a ß-resorcylic acid harboring a long unesterified aliphatic side chain, whereas the long aliphatic chains were esterified to form macrolactones in 4-9. Among the isolated compounds, monocillin I and radicicol showed potent antifungal activities against Cryptococcus neoformans, comparable to clinically available antifungal agents and radicicol showed weak antifungal activity against Candida albicans. These findings provide insight into the chemical diversity of fungal RAL-type compounds and their pharmacological potential.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Chenopodiaceae/microbiologia , Colletotrichum/química , Cryptococcus neoformans/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Plantas Tolerantes a Sal/microbiologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida albicans/crescimento & desenvolvimento , Cryptococcus neoformans/crescimento & desenvolvimento , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA