Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(2): 935-951, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610787

RESUMO

Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.


Assuntos
Chloroflexi , Glicosídeo Hidrolases , Nucleosídeo Q , Humanos , Guanina/metabolismo , Micronutrientes , Nucleosídeo Q/metabolismo , Proteínas , RNA de Transferência/metabolismo , Glicosídeo Hidrolases/química , Chloroflexi/enzimologia
2.
J Biol Chem ; 298(3): 101656, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124004

RESUMO

N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 °C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N- bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains-including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site-was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.


Assuntos
Chloroflexi , Oxirredutases N-Desmetilantes , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Catálise , Chloroflexi/enzimologia , Chloroflexi/genética , Mutagênese Sítio-Dirigida , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Engenharia de Proteínas , Especificidade por Substrato
3.
Enzyme Microb Technol ; 156: 109989, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35134708

RESUMO

Thermomicrobium roseum DSM 5159 lipase (TrLip) is an enzyme with marked thermostability and excellent solvent resistance. However, TrLip reveals relatively high catalytic efficiency on short-chain substrates but poor activity against mid-long or long-chain fatty acids, which would limit its industrial application. In this study, ancestral sequence reconstruction (ASR), a common engineering tool for the evolutionary history of protein families, was employed to identify the natural evolutionary trends within 5 Å around the catalytic center. Two mutation libraries were constructed, one for the catalytic center and the other for the pocket flexibility. A total of 69 mutants were expressed and purified in the Escherichia coli expression system to determine the kinetic parameters, and W219G could significantly enhance the catalytic efficiency against substrates with 12-, 16- and 18-carbon side chains. In addition, the double mutant W219G/F265M could further catalyze the breakdown of the above three substrates up to 6.34-, 4.21- and 4.86-folds compared to the wild-type TrLip, while the initial pH and thermostability were maintained. Through bioinformatics analysis, the significantly enhanced catalytic efficiency against longer-side chain substrates should be associated with the reduction of steric hindrance. With the outstanding stability and the promoted activity, TrLip should be of great potential in chemical and food industry.


Assuntos
Chloroflexi , Lipase , Catálise , Chloroflexi/enzimologia , Chloroflexi/genética , Estabilidade Enzimática , Lipase/metabolismo , Especificidade por Substrato
4.
Microbiologyopen ; 11(1): e1258, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212484

RESUMO

Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported NOR subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported.


Assuntos
Chloroflexi/metabolismo , Nitrito Redutases/química , Oxirredutases/química , Chloroflexi/classificação , Chloroflexi/enzimologia , Chloroflexi/genética , Desnitrificação , Variação Genética , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia
5.
J Biosci Bioeng ; 131(6): 622-630, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33676867

RESUMO

Traditionally, filamentous fungi and actinomycetes are well-known cellulolytic microorganisms that have been utilized in the commercial production of cellulase enzyme cocktails for industrial-scale degradation of plant biomass. Noticeably, the Ktedonobacteria lineage (phylum Chloroflexi) with actinomycetes-like morphology was identified and exhibited diverse carbohydrate utilization or degradation abilities. In this study, we performed genome-wide profiling of carbohydrate-active enzymes (CAZymes) in the filamentous Ktedonobacteria lineage. Numerous CAZymes (153-290 CAZymes, representing 63-131 glycoside hydrolases (GHs) per genome), including complex mixtures of endo- and exo-cellulases, were predicted in 15 available Ktedonobacteria genomes. Of note, 4-28 CAZymes were predicted to be extracellular enzymes, whereas 3-29 CAZymes were appended with carbohydrate-binding modules (CBMs) that may promote their binding to insoluble carbohydrate substrates. This number far exceeded other Chloroflexi lineages and were comparable to the cellulolytic actinomycetes. Six multi-modular extracellular GHs were cloned from the thermophilic Thermosporothrix hazakensis SK20-1T strain and heterologously expressed. The putative endo-glucanases of ThazG5-1, ThazG9, and ThazG12 exhibited strong cellulolytic activity, whereas the putative exo-glucanases ThazG6 and ThazG48 formed weak but observable halos on carboxymethyl cellulose plates, indicating their potential biotechnological application. The purified recombinant ThazG12 had near-neutral pH (optimal 6.0), high thermostability (60°C), and broad specificity against soluble and insoluble polysaccharide substrates. It also represented described a novel thermostable bacterial ß-1,4-glucanase in the GH12 family. Together, this research revealed the underestimated cellulolytic potential of the Ktedonobacteria lineage and highlighted its potential biotechnological utility as a promising microbial resource for the discovery of industrially useful cellulases.


Assuntos
Metabolismo dos Carboidratos/genética , Celulases/genética , Celulose/metabolismo , Chloroflexi , Bactérias/metabolismo , Celulases/metabolismo , Chloroflexi/classificação , Chloroflexi/enzimologia , Chloroflexi/genética , Chloroflexi/metabolismo , Mapeamento Cromossômico , Fungos/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Engenharia Metabólica , Organismos Geneticamente Modificados , Plantas/metabolismo , Polissacarídeos/metabolismo
6.
Int J Biol Macromol ; 178: 434-443, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647338

RESUMO

Thermomicrobium roseum sarcosine oxidase (TrSOX) was a N-demethylase with specific substrate chiral selectivity, outstanding thermostability and environmental resistance. To promote the expression of TrSOX in Bacillus subtilis W600, the HpaII promoter of pMA5 plasmid was replaced by constitutive or inducible promoters. Through orthogonal experiment, the expression process was optimized, B. subtilis W600 cells containing pMA5-Pxyl-trSOX plasmid were cultivated until OD600nm reached 2.0 and were then induced with 1.6% xylose at 37 °C for 2 h, and the native environment of T. roseum was simulated by heating at 80 °C, with the productivity of TrSOX increased from ~8.3 to ~66.7 µg/g wet cells; and the simulated high temperature was the key switch for the final folding. To reduce the surface hydrophobicity, a S320R mutant was built to form a hydrophilic lid around the entrance of the substrate pocket, and the yield of TrSOX (S320R) was ~163.0 µg/g wet cells, approximately 20 folds as that in the initial expression system. This mutant revealed the similar secondary structure, stability, resistance, chiral substrate selectivity and optimal reaction environment with wild type TrSOX; however, the N-demethylation activities for amino acid derivative substrates were dramatically increased, while those for hydrophobic non-amino acid compounds were repressed.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Chloroflexi/genética , Expressão Gênica , Regiões Promotoras Genéticas , Dobramento de Proteína , Sarcosina Oxidase/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Chloroflexi/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sarcosina Oxidase/genética
7.
Bioorg Med Chem ; 28(20): 115686, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069071

RESUMO

Enzyme assemblies such as type II polyketide synthases (PKSs) produce a wide array of bioactive secondary metabolites. While the molecules produced by type II PKSs have found remarkable clinical success, the biosynthetic prowess of these enzymes has been stymied by 1) the inability to reconstitute the bioactivity of the minimal PKS enzymes in vitro and 2) limited exploration of type II PKSs from diverse phyla. To begin filling this unmet need, we expressed, purified, and characterized the ketosynthase chain length factor (KS-CLF) and acyl carrier protein (ACP) from Ktedonobacter racemifer (Kr). Using E. coli as a heterologous host, we obtained soluble proteins in titers signifying improvements over previous KS-CLF heterologous expression efforts. Characterization of these enzymes reveals that KrACP has self-malonylating activity. Sedimentation velocity analytical ultracentrifugation (SV-AUC) analysis of holo-KrACP and KrKS-CLF indicates that these enzymes do not interact in vitro, suggesting that the acylated state of these proteins might play an important role in facilitating biosynthetically relevant interactions. These results lay important groundwork for optimizing the interaction between KrKS-CLF and KrACP and exploring the biosynthetic potential of other non-actinomycete type II PKSs.


Assuntos
Chloroflexi/enzimologia , Escherichia coli/metabolismo , Policetídeo Sintases/biossíntese , Policetídeo Sintases/isolamento & purificação , Policetídeo Sintases/metabolismo
8.
Enzyme Microb Technol ; 139: 109594, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32732042

RESUMO

Tagatose is a rare hexoketose with potential health benefits. Here, an enzyme, GatZ subunit ofd-tagatose-1,6-bisphosphate aldolase, was characterized. GatZ is involved in a multi-enzyme cascade reaction system that can produce tagatose from maltodextrin. It showed maximum activity at 70 °C and a pH 8.0, and required supplementation with 5 mM Mg2+ to achieve the highest catalytic activity. The Km and Vmax values of GatZ using fructose 6-phosphate as substrate were 5.66 mM and 0.0329 mmol/L min, respectively. An in vitro multi-enzyme system containing GatZ was constructed, and 1.75 g/L tagatose was produced from 5 g/L maltodextrin after 10 h. This biosystem could potentially enrich the application of C4 epimerases in rare sugar bioproduction.


Assuntos
Carboidratos Epimerases/metabolismo , Chloroflexi/enzimologia , Frutosefosfatos/metabolismo , Hexoses/biossíntese , Carboidratos Epimerases/genética , Chloroflexi/genética , Clonagem Molecular , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Polissacarídeos/metabolismo , Especificidade por Substrato
9.
BMC Genomics ; 21(1): 334, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349659

RESUMO

BACKGROUND: The rnpB gene encodes for an essential catalytic RNA (RNase P). Like other essential RNAs, RNase P's sequence is highly variable. However, unlike other essential RNAs (i.e. tRNA, 16 S, 6 S,...) its structure is also variable with at least 5 distinct structure types observed in prokaryotes. This structural variability makes it labor intensive and challenging to create and maintain covariance models for the detection of RNase P RNA in genomic and metagenomic sequences. The lack of a facile and rapid annotation algorithm has led to the rnpB gene being the most grossly under annotated essential gene in completed prokaryotic genomes with only a 24% annotation rate. Here we describe the coupling of the largest RNase P RNA database with the local alignment scoring algorithm to create the most sensitive and rapid prokaryote rnpB gene identification and annotation algorithm to date. RESULTS: Of the 2772 completed microbial genomes downloaded from GenBank only 665 genomes had an annotated rnpB gene. We applied P Finder to these genomes and were able to identify 2733 or nearly 99% of the 2772 microbial genomes examined. From these results four new rnpB genes that encode the minimal T-type P RNase P RNAs were identified computationally for the first time. In addition, only the second C-type RNase P RNA was identified in Sphaerobacter thermophilus. Of special note, no RNase P RNAs were detected in several obligate endosymbionts of sap sucking insects suggesting a novel evolutionary adaptation. CONCLUSIONS: The coupling of the largest RNase P RNA database and associated structure class identification with the P Finder algorithm is both sensitive and rapid, yielding high quality results to aid researchers annotating either genomic or metagenomic data. It is the only algorithm to date that can identify challenging RNAse P classes such as C-type and the minimal T-type RNase P RNAs. P Finder is written in C# and has a user-friendly GUI that can run on multiple 64-bit windows platforms (Windows Vista/7/8/10). P Finder is free available for download at https://github.com/JChristopherEllis/P-Finder as well as a small sample RNase P RNA file for testing.


Assuntos
Genes Microbianos , Genômica/métodos , Ribonuclease P/genética , Algoritmos , Chloroflexi/enzimologia , Chloroflexi/genética , Bases de Dados Genéticas , Genoma Microbiano/genética , Metagenômica/métodos , Conformação de Ácido Nucleico , Células Procarióticas/enzimologia , RNA Catalítico/química , RNA Catalítico/classificação , RNA Catalítico/genética , Ribonuclease P/química , Ribonuclease P/classificação , Software
10.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32276981

RESUMO

Coenzyme F420 is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F420-dependent enzymes are attracting increasing interest as tools in biocatalysis, F420 biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactate (2-PL) moiety of F420 is formed from free 2-PL, it was recently shown that phosphoenolpyruvate is incorporated in Actinobacteria and that the C-terminal domain of the FbiB protein, a member of the nitroreductase (NTR) superfamily, converts dehydro-F420 into saturated F420 Outside the Actinobacteria, however, the situation is still unclear because FbiB is missing in these organisms and enzymes of the NTR family are highly diversified. Here, we show by heterologous expression and in vitro assays that stand-alone NTR enzymes from Thermomicrobia exhibit dehydro-F420 reductase activity. Metabolome analysis and proteomics studies confirmed the proposed biosynthetic pathway in Thermomicrobium roseum These results clarify the biosynthetic route of coenzyme F420 in a class of Gram-negative bacteria, redefine functional subgroups of the NTR superfamily, and offer an alternative for large-scale production of F420 in Escherichia coli in the future.IMPORTANCE Coenzyme F420 is a redox cofactor of Archaea and Actinobacteria, as well as some Gram-negative bacteria. Its involvement in processes such as the biosynthesis of antibiotics, the degradation of xenobiotics, and asymmetric enzymatic reductions renders F420 of great relevance for biotechnology. Recently, a new biosynthetic step during the formation of F420 in Actinobacteria was discovered, involving an enzyme domain belonging to the versatile nitroreductase (NTR) superfamily, while this process remained blurred in Gram-negative bacteria. Here, we show that a similar biosynthetic route exists in Thermomicrobia, although key biosynthetic enzymes show different domain architectures and are only distantly related. Our results shed light on the biosynthesis of F420 in Gram-negative bacteria and refine the knowledge about sequence-function relationships within the NTR superfamily of enzymes. Appreciably, these results offer an alternative route to produce F420 in Gram-negative model organisms and unveil yet another biochemical facet of this pathway to be explored by synthetic microbiologists.


Assuntos
Chloroflexi/metabolismo , Nitrorredutases/metabolismo , Riboflavina/análogos & derivados , Vias Biossintéticas , Chloroflexi/enzimologia , Oxirredução , Riboflavina/biossíntese
11.
J Agric Food Chem ; 68(18): 5129-5137, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297517

RESUMO

Prolyl endopeptidases (PEPs) hydrolyze proteins to yield bioactive peptides and are effective in the treatment of celiac disease. However, the catalytic efficiency of PEPs still has the potential to be improved, which could further strengthen their industrial and therapeutic applications. Herein, a novel rational design strategy based on a "near-attack conformation" of the catalytic state of PEP was adopted. Constrained dynamic simulations were applied, followed by the virtual screening of potentially favorable mutants according to their binding free energy. We redesigned Sphaerobacter thermophiles PEP with high-temperature activity/stability, a wide range of pH stabilities, and high proline specificity. As a result, the kcat value of two PEP mutants (I462W and Q560Y) increased by 208.2 and 150.1%, respectively, and the kcat/KM increased by 32.7 and 6.3%, respectively. These data revealed that the PEP mutants had improved catalytic efficiency and that our strategy can be applied for enzyme engineering.


Assuntos
Proteínas de Bactérias/química , Chloroflexi/enzimologia , Prolil Oligopeptidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Chloroflexi/química , Chloroflexi/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Prolil Oligopeptidases/genética , Prolil Oligopeptidases/metabolismo , Conformação Proteica , Especificidade por Substrato
12.
Sci Rep ; 10(1): 2100, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034217

RESUMO

Methionine synthases are essential enzymes for amino acid and methyl group metabolism in all domains of life. Here, we describe a putatively anciently derived type of methionine synthase yet unknown in bacteria, here referred to as core-MetE. The enzyme appears to represent a minimal MetE form and transfers methyl groups from methylcobalamin instead of methyl-tetrahydrofolate to homocysteine. Accordingly, it does not possess the tetrahydrofolate binding domain described for canonical bacterial MetE proteins. In Dehalococcoides mccartyi strain CBDB1, an obligate anaerobic, mesophilic, slowly growing organohalide-respiring bacterium, it is encoded by the locus cbdbA481. In line with the observation to not accept methyl groups from methyl-tetrahydrofolate, all known genomes of bacteria of the class Dehalococcoidia lack metF encoding for methylene-tetrahydrofolate reductase synthesizing methyl-tetrahydrofolate, but all contain a core-metE gene. We heterologously expressed core-MetECBDB in E. coli and purified the 38 kDa protein. Core-MetECBDB exhibited Michaelis-Menten kinetics with respect to methylcob(III)alamin (KM ≈ 240 µM) and L-homocysteine (KM ≈ 50 µM). Only methylcob(III)alamin was found to be active as methyl donor with a kcat ≈ 60 s-1. Core-MetECBDB did not functionally complement metE-deficient E. coli strain DH5α (ΔmetE::kan) suggesting that core-MetECBDB and the canonical MetE enzyme from E. coli have different enzymatic specificities also in vivo. Core-MetE appears to be similar to a MetE-ancestor evolved before LUCA (last universal common ancestor) using methylated cobalamins as methyl donor whereas the canonical MetE consists of a tandem repeat and might have evolved by duplication of the core-MetE and diversification of the N-terminal part to a tetrahydrofolate-binding domain.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Chloroflexi/enzimologia , Chloroflexi/genética , Chloroflexi/metabolismo , Dehalococcoides , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano/genética , Homocisteína/metabolismo , Metionina/metabolismo , Metilação , Filogenia , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo
13.
Chemistry ; 26(10): 2178-2182, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31898827

RESUMO

Methylated analogues of isopentenyl diphosphate were synthesised and enzymatically incorporated into methylated terpenes. A detailed stereochemical analysis of the obtained products is presented. The methylated terpene precursors were also used in conjunction with various isotopic labellings to gain insights into the mechanisms of their enzymatic formation.


Assuntos
Alquil e Aril Transferases/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Terpenos/metabolismo , Chloroflexi/enzimologia , Chryseobacterium/enzimologia , Hemiterpenos/síntese química , Hemiterpenos/química , Hemiterpenos/metabolismo , Metilação , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Estereoisomerismo , Terpenos/química
14.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911493

RESUMO

It has been hypothesized that the abundant heterotrophic ocean bacterioplankton in the SAR202 clade of the phylum Chloroflexi evolved specialized metabolisms for the oxidation of organic compounds that are resistant to microbial degradation via common metabolic pathways. Expansions of paralogous enzymes were reported and implicated in hypothetical metabolism involving monooxygenase and dioxygenase enzymes. In the proposed metabolic schemes, the paralogs serve the purpose of diversifying the range of organic molecules that cells can utilize. To further explore SAR202 evolution and metabolism, we reconstructed single amplified genomes and metagenome-assembled genomes from locations around the world that included the deepest ocean trenches. In an analysis of 122 SAR202 genomes that included seven subclades spanning SAR202 diversity, we observed additional evidence of paralog expansions that correlated with evolutionary history, as well as further evidence of metabolic specialization. Consistent with previous reports, families of flavin-dependent monooxygenases were observed mainly in the group III SAR202 genomes, and expansions of dioxygenase enzymes were prevalent in those of group VII. We found that group I SAR202 genomes encode expansions of racemases in the enolase superfamily, which we propose evolved for the degradation of compounds that resist biological oxidation because of chiral complexity. Supporting the conclusion that the paralog expansions indicate metabolic specialization, fragment recruitment and fluorescent in situ hybridization (FISH) with phylogenetic probes showed that SAR202 subclades are indigenous to different ocean depths and geographical regions. Surprisingly, some of the subclades were abundant in surface waters and contained rhodopsin genes, altering our understanding of the ecological role of SAR202 species in stratified water columns.IMPORTANCE The oceans contain an estimated 662 Pg C in the form of dissolved organic matter (DOM). Information about microbial interactions with this vast resource is limited, despite broad recognition that DOM turnover has a major impact on the global carbon cycle. To explain patterns in the genomes of marine bacteria, we propose hypothetical metabolic pathways for the oxidation of organic molecules that are resistant to oxidation via common pathways. The hypothetical schemes we propose suggest new metabolic pathways and classes of compounds that could be important for understanding the distribution of organic carbon throughout the biosphere. These genome-based schemes will remain hypothetical until evidence from experimental cell biology can be gathered to test them. Our findings also fundamentally change our understanding of the ecology of SAR202 bacteria, showing that metabolically diverse variants of these cells occupy niches spanning all depths and are not relegated to the dark ocean.


Assuntos
Chloroflexi/enzimologia , Chloroflexi/genética , Genoma Bacteriano , Metagenoma , Metagenômica , Família Multigênica , Biodiversidade , Biologia Computacional/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Filogenia , Filogeografia
15.
J Struct Biol ; 208(3): 107395, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560999

RESUMO

Transaminases are pyridoxal 5'-phosphate-dependent enzymes that reversibly catalyze transamination reactions from an amino group donor substrate to an amino group acceptor substrate. ω-Transaminases (ωTAs) utilize compounds with an amino group not at α-carbon position as their amino group donor substrates. Recently, a novel ωTA with broad substrate specificity and high thermostability from the thermophilic bacterium Sphaerobacter thermophilus (St-ωTA) has been reported. Although St-ωTA has been biochemically characterized, little is known about its determinants of substrate specificity. In the present study, we determined the crystal structure of St-ωTA at 1.9 Šresolution to clarify in detail its mechanism of substrate recognition. The structure of St-ωTA revealed that it has a voluminous active site resulting from the unique spatial arrangement of residues comprising its active site. In addition, our molecular docking simulation results suggest that substrate compounds may bind to active site residues via electrostatic interactions or hydrophobic interactions that can be induced by subtle rearrangements of active site residues. On the basis of these structural analyses, we propose a plausible working model of the enzymatic mechanism of St-ωTA. Our results provide profound structural insights into the substrate specificity of St-ωTA and extend the boundaries of knowledge of TAs.


Assuntos
Chloroflexi/enzimologia , Transaminases/química , Transaminases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato
16.
Biochem Biophys Res Commun ; 518(1): 72-79, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31405562

RESUMO

Malyl-coenzyme A lyase (MCL) is a carbon-carbon bond lyase that catalyzes the reversible cleavage of coenzyme A (CoA) thioesters in multiple carbon metabolic pathways. This enzyme contains a CitE-like TIM barrel and an additional C-terminal domain that undergoes conformational changes upon substrate binding. However, the structural basis underlying these conformational changes is elusive. Here, we report the crystal structure of MCL from the thermophilic photosynthetic bacterium Roseiflexus castenholzii (RfxMCL) in the apo- and oxalate-bound forms at resolutions of 2.50 and 2.65 Å, respectively. Molecular dynamics simulations and structural comparisons with MCLs from other species reveal the deflection of the C-terminal domain to close the adjacent active site pocket in the trimer and contribute active site residues for CoA coordination. The deflection angles of the C-terminal domain are not only related to the occupation but also the type of bound substrates in the adjacent active site pocket. Our work illustrates that a conformational switch of the C-terminal domain accompanies the substrate-binding of MCLs. The results provide a framework for further investigating the reaction mechanism and multifunctionality of MCLs in different carbon metabolic pathways.


Assuntos
Chloroflexi/enzimologia , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos , Especificidade por Substrato
17.
N Biotechnol ; 53: 57-64, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31299302

RESUMO

A glycoside hydrolase family 5 (GH5) subfamily 22 gene, designated T81Xyl5_22A, was identified in the genome of the aerobic thermophilic bacterium, Thermogemmatispora sp. T81 (locus A4R35_07040). The gene was cloned and heterologously expressed in Escherichia coli and the gene product characterized biochemically. The recombinant enzyme had an optimal catalytic activity at pH5.0 and 65 °C, and was active against beechwood xylan and rye arabinoxylan. It yielded only xylose molecules as products of beechwood xylan hydrolysis, indicating that it is a GH5 family ß-d-xylosidase. Using 4-nitrophenyl ß-d-xylopyranoside (pNPX) as a substrate, the KM, Vmax, kcat and kcat/KM kinetic parameters were determined as 0.25 ±â€¯0.03 mM, 889.47 ±â€¯28.54 U/mg, 39.20 s-1 and 156.8 mM-1 s-1, respectively. Small-angle X-ray scattering (SAXS) data enabled reconstruction of the enzyme's low-resolution molecular envelope and revealed that it formed dimers in solution. As far as we are aware, this is the first description of a thermostable bacterial GH5 family ß-d-xylosidase.


Assuntos
Chloroflexi/enzimologia , Temperatura , Xilosidases/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Xilosidases/química , Xilosidases/genética
18.
ACS Chem Biol ; 14(8): 1767-1779, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31268677

RESUMO

A bifurcation of the mevalonate (MVA) pathway was recently discovered in bacteria of the Chloroflexi phylum. In this alternative route for the biosynthesis of isopentenylpyrophosphate (IPP), the penultimate step is the decarboxylation of (R)-mevalonate 5-phosphate ((R)-MVAP) to isopentenyl phosphate (IP), which is followed by the ATP-dependent phosphorylation of IP to IPP catalyzed by isopentenyl phosphate kinase (IPK). Notably, the decarboxylation reaction is catalyzed by mevalonate 5-phosphate decarboxylase (MPD), which shares considerable sequence similarity with mevalonate diphosphate decarboxylase (MDD) of the classical MVA pathway. We show that an enzyme originally annotated as an MDD from the Chloroflexi bacterium Anaerolinea thermophila possesses equal catalytic efficiency for (R)-MVAP and (R)-mevalonate 5-diphosphate ((R)-MVAPP). Further, the molecular basis for this dual specificity is revealed by near atomic-resolution X-ray crystal structures of A. thermophila MPD/MDD bound to (R)-MVAP or (R)-MVAPP. These findings, when combined with sequence and structural comparisons of this bacterial enzyme, functional MDDs, and several putative MPDs, delineate key active-site residues that confer substrate specificity and functionally distinguish MPD and MDD enzyme classes. Extensive sequence analyses identified functional MPDs in the halobacteria class of archaea that had been annotated as MDDs. Finally, no eukaryotic MPD candidates were identified, suggesting the absence of the alternative MVA (altMVA) pathway in all eukaryotes, including, paradoxically, plants, which universally encode a structural and functional homologue of IPK. Additionally, we have developed a viable engineered strain of Saccharomyces cerevisiae as an in vivo metabolic model and a synthetic biology platform for enzyme engineering and terpene biosynthesis in which the classical MVA pathway has been replaced with the altMVA pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carboxiliases/química , Carboxiliases/genética , Catálise , Domínio Catalítico , Chloroflexi/enzimologia , Descarboxilação , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Ligação Proteica , Engenharia de Proteínas , Saccharomyces cerevisiae/genética , Especificidade por Substrato
19.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276591

RESUMO

Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host.


Assuntos
Actinobacteria/enzimologia , Chloroflexi/enzimologia , Cianobactérias/enzimologia , Oxirredutases/química , Poríferos/microbiologia , Proteobactérias/enzimologia , Actinobacteria/isolamento & purificação , Animais , Região do Caribe , Chloroflexi/isolamento & purificação , Cianobactérias/isolamento & purificação , Hidrolases/química , Filogenia , Poríferos/enzimologia , Proteobactérias/isolamento & purificação , Simbiose
20.
Sci Rep ; 9(1): 10604, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332202

RESUMO

Dehalococcoides mccartyi (Dhc) bacterial strains expressing active reductive dehalogenase (RDase) enzymes play key roles in the transformation and detoxification of chlorinated pollutants, including chlorinated ethenes. Site monitoring regimes traditionally rely on qPCR to assess the presence of Dhc biomarker genes; however, this technique alone cannot directly inform about dechlorination activity. To supplement gene-centric approaches and provide a more reliable proxy for dechlorination activity, we sought to demonstrate a targeted proteomics approach that can characterize Dhc mediated dechlorination in groundwater contaminated with chlorinated ethenes. Targeted peptide selection was conducted in axenic cultures of Dhc strains 195, FL2, and BAV1. These experiments yielded 37 peptides from housekeeping and structural proteins (i.e., GroEL, EF-TU, rpL7/L2 and the S-layer), as well as proteins involved in the reductive dechlorination activity (i.e., FdhA, TceA, and BvcA). The application of targeted proteomics to a defined bacterial consortium and contaminated groundwater samples resulted in the detection of FdhA peptides, which revealed active dechlorination with Dhc strain-level resolution, and the detection of RDases peptides indicating specific reductive dechlorination steps. The results presented here show that targeted proteomics can be applied to groundwater samples and provide protein level information about Dhc dechlorination activity.


Assuntos
Proteínas de Bactérias/análise , Chloroflexi/metabolismo , Água Subterrânea/química , Biodegradação Ambiental , Biomarcadores/análise , Chloroflexi/química , Chloroflexi/enzimologia , Dehalococcoides , Água Subterrânea/microbiologia , Hidrocarbonetos Clorados/metabolismo , Proteômica , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...