Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(8): 1846-1852, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124760

RESUMO

Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c' (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences. In addition, PHCP, TTCP, and AVCP and their variants with altered stability similarly bound nitric oxide and carbon oxide, but not oxygen. Therefore, the thermal stability of TTCP together with PHCP and AVCP can be tuned through specific interactions around the heme without affecting their gas-binding function. These cytochromes c' will be useful as specific gas sensor proteins exhibiting a wide thermal stability range.


Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/enzimologia , Citocromos c'/metabolismo , Gases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Chromatiaceae/crescimento & desenvolvimento , Dicroísmo Circular , Cristalografia por Raios X , Citocromos c'/química , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
2.
Biochim Biophys Acta Bioenerg ; 1862(1): 148307, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926863

RESUMO

Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.


Assuntos
Proteínas de Bactérias/química , Chromatiaceae/enzimologia , Complexos de Proteínas Captadores de Luz/química , Ubiquinona/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico Ativo , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Ubiquinona/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1861(8): 148205, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305413

RESUMO

An increased robustness against high temperature and the much red-shifted near-infrared absorption spectrum of excitons in the LH1-RC core pigment-protein complex from the thermophilic photosynthetic purple sulfur bacterium Thermochromatium tepidum has recently attracted much interest. In the present work, thermal and hydrostatic pressure stability of the peripheral LH2 and core LH1-RC complexes from this bacterium were in parallel investigated by various optical spectroscopy techniques applied over a wide spectral range from far-ultraviolet to near-infrared. In contrast to expectations, very distinct robustness of the complexes was established, while the sturdiness of LH2 surpassed that of LH1-RC both with respect to temperatures between 288 and 360 K, and pressures between 1 bar and 14 kbar. Subtle structural variances related to the hydrogen bond network are likely responsible for the extra stability of LH2.


Assuntos
Chromatiaceae/enzimologia , Complexos de Proteínas Captadores de Luz/metabolismo , Pressão , Temperatura , Elétrons , Complexos de Proteínas Captadores de Luz/química , Prótons
4.
J Biol Chem ; 294(47): 18002-18014, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31467084

RESUMO

Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em ) of the corresponding redox transformations are similar, -185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em , -129 mV) to His/Met (Em , +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).


Assuntos
Campylobacter jejuni/enzimologia , Chromatiaceae/enzimologia , Heme/metabolismo , Oxirredutases/metabolismo , Dicroísmo Circular , Eletroquímica , Transporte de Elétrons , Oxirredução , Tiossulfatos/metabolismo
5.
Int J Antimicrob Agents ; 53(2): 158-164, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30395985

RESUMO

To investigate the origin of PER extended-spectrum ß-lactamases, publicly available sequence databases were searched for blaPER-like genes. Three genomes from Pararheinheimera, a genus associated with water and soil environments, were found to carry blaPER-like genes but lacked the ISCR1/ISPa12/ISPa13 insertion sequences commonly associated with blaPER in clinical isolates. Sequence analysis revealed 78-96% nucleotide identity and conserved synteny between the clinical mobile genetic elements (MGEs) encoding blaPER-1 and the blaPER locus in the Pararheinheimera genomes. Notably, blaPER genes were only identified in 3 of 21 Pararheinheimera and Rheinheimera genomes, whereas the genetic environment of blaPER genes as found in clinical MGEs was conserved in all Pararheinheimera and Rheinheimera genomes. These findings indicate that blaPER genes were likely acquired by a branch of the Pararheinheimera genus long before the antibiotic era. Later, blaPER genes were mobilised, likely through the involvement of insertion sequences, from one or several Pararheinheimera species, allowing their dissemination into human pathogens.


Assuntos
Antibacterianos/farmacologia , Chromatiaceae/enzimologia , Chromatiaceae/genética , Elementos de DNA Transponíveis/genética , beta-Lactamases/genética , Chromatiaceae/metabolismo , DNA Bacteriano/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana
6.
Biosci Biotechnol Biochem ; 82(2): 304-311, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29327659

RESUMO

AVCP cytochrome c' from mesophilic Allochromatium vinosum exhibits lower stability than a thermophilic counterpart, Hydrogenophilus thermoluteolus cytochrome c' (PHCP), in which the six specific amino acid residues that are not conserved in AVCP are responsible for its stability. Here we measured the stability of AVCP variants carrying these specific residues instead of the original AVCP ones. Among the six single AVCP variants, all of which formed a dimeric structure similar to that of the wild-type, three were successfully stabilized compared with the wild-type, while one showed lower stability than the wild-type. In addition, the most stabilized and destabilized AVCP variants could bind CO, similar to the wild-type. These results indicated that mesophilic AVCP could be stabilized through specific three mutations modeled by the thermophilic counterpart, PHCP, without changing the CO binding ability.


Assuntos
Chromatiaceae/enzimologia , Citocromos c/genética , Citocromos c/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Homologia de Sequência de Aminoácidos , Chromatiaceae/genética , Citocromos c/química , Estabilidade Enzimática , Modelos Moleculares , Proteínas Mutantes/química , Conformação Proteica , Temperatura
7.
Phys Chem Chem Phys ; 20(3): 1693-1706, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29264600

RESUMO

The extraordinary capability of [NiFe]-hydrogenases to catalyse the reversible interconversion of protons and electrons into dihydrogen (H2) has stimulated numerous experimental and theoretical studies addressing the direct utilization of these enzymes in H2 production processes. Unfortunately, the introduction of these natural H2-catalysts in biotechnological applications is limited by their inhibition under oxidising (aerobic and anaerobic) conditions. With the aim of contributing to overcome this limitation, we studied the oxidative inactivation mechanism of [NiFe]-hydrogenases by performing Density Functional Theory (DFT) calculations on a very large model of their active site in which all the amino acids forming the first and second coordination spheres of the NiFe cluster have been explicitly included. We identified an O2 molecule and two H2O molecules as sources of the two oxygen atoms that are inserted at the active site of the inactive forms of the enzyme (Ni-A and Ni-B) under aerobic and anaerobic conditions, respectively. Furthermore, our results support the experimental evidence that the Ni-A-to-Ni-B ratio strongly depends on the number of reducing equivalents available for the process and on the oxidizing conditions under which the reaction takes place.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Chromatiaceae/enzimologia , Hidrogênio/química , Hidrogenase/metabolismo , Oxirredução , Oxigênio/química
8.
J Bacteriol ; 199(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28320886

RESUMO

Many aspects of bacterial physiology and behavior, including motility, surface attachment, and the cell cycle, are controlled by cyclic di-GMP (c-di-GMP)-dependent signaling pathways on the scale of seconds to minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing the expression of genes encoding c-di-GMP-synthetic (diguanylate cyclases) and -degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared-light-regulated diguanylate cyclase, BphS, was engineered previously, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue-light-activated phosphodiesterase EB1 can be used in combination with the red/near-infrared-light-regulated diguanylate cyclase BphS for the bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, the cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occur at a fast (seconds-to-minutes) pace. Interrogation of these processes at high temporal and spatial resolution using chemicals is difficult or impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue-light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared-light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.


Assuntos
GMP Cíclico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Genética Microbiana/métodos , Optogenética/métodos , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Alphaproteobacteria/enzimologia , Alphaproteobacteria/genética , Chromatiaceae/enzimologia , Chromatiaceae/genética , GMP Cíclico/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Luz , Diester Fosfórico Hidrolases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Protein Sci ; 26(4): 737-748, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097774

RESUMO

Thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c' (AVCP), which has a homo-dimeric structure and ligand-binding ability. To understand the thermal stability mechanism and ligand-binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo-dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.65 Å. In the PHCP structure, six specific residues appeared to strengthen the heme-related and subunit-subunit interactions, which were not conserved in the AVCP structure. PHCP variants having altered subunit-subunit interactions were more severely destabilized than ones having altered heme-related interactions. The PHCP structure further revealed a ligand-binding channel and a penta-coordinated heme, as observed in the AVCP protein. A spectroscopic study clearly showed that some ligands were bound to the PHCP protein. It is concluded that the dimeric PHCP from the thermophile is effectively stabilized through heme-related and subunit-subunit interactions with conservation of the ligand-binding ability. BRIEF SUMMARY: We report the X-ray crystal structure of cytochrome c' (PHCP) from thermophilic Hydrogenophilus thermoluteolus. The high thermal stability of PHCP was attributed to heme-related and subunit-subunit interactions, which were confirmed by a mutagenesis study. The ligand-binding ability of PHCP was examined by spectrophotometry. PHCP acquired the thermal stability with conservation of the ligand-binding ability. This study furthers the understanding of the stability and function of cytochromes c.


Assuntos
Proteínas de Bactérias/química , Citocromos c'/química , Hydrogenophilaceae/enzimologia , Multimerização Proteica , Chromatiaceae/enzimologia , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta , Estrutura Quaternária de Proteína
10.
Protein Sci ; 26(3): 464-474, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27883268

RESUMO

The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c' from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four-helix bundle structure containing a covalently bound five-coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer-monomer transition according to the absence and presence of CO. Herein, domain-swapped dimeric AVCP was constructed and utilized to form a tetramer and high-order oligomers. The X-ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain-swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain-swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit-subunit interactions at the interfaces of the domain-swapped dimer and monomer subunits in the tetramer were also similar to the subunit-subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain-swapped dimer and two monomers upon CO binding. Without monomers, the domain-swapped dimers formed tetramers, hexamers, and higher-order oligomers in the absence of CO, whereas the oligomers dissociated to domain-swapped dimers in the presence of CO, demonstrating that the domain-swapped dimer maintains the CO-induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer-monomer transition protein.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Chromatiaceae/enzimologia , Citocromos c'/química , Cristalografia por Raios X , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
11.
ACS Synth Biol ; 5(11): 1231-1238, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27452868

RESUMO

The development of synthetic biological devices has increased rapidly in recent years and the practical benefits of such biological devices are becoming increasingly clear. Here, we further improved the design of a previously reported high-throughput genetic enzyme screening system by investigating device-compatible biological components and phenol-mediated cell-cell communication, both of which increased the efficiency and practicality of the screening device without requiring the use of flow cytometry analysis. A sensor cell was designed to detect novel microbes with target enzyme activities on solid media by forming clear, circular colonies with fluorescence around the unknown microbes producing target enzymes. This mechanism of detection was enabled by the combination of pre-effector phenolic substrate treatment in the presence of target enzyme-producing microbes and control of the growth and fluorescence of remote sensor cells via phenol-mediated cell-cell communication. The sensor cells were applied to screen soil bacteria with phosphatase activity using phenyl phosphate as phenolic substrates. The sensor cells facilitated successful visualization of phosphatase activity in unknown microbes, which were identified by 16S rRNA analysis. Enzyme activity assays confirmed that the proposed screening technique was able to find 23 positive clones out of 33 selected colonies. Since many natural enzymatic reactions produce phenolic compounds from phenol-derived substrates, we anticipate that the proposed technique may have broad applications in the assessment and screening of novel microbes with target enzymes of interest. This method also can provide insights into the identification of novel enzymes for which screening assays are not yet available.


Assuntos
Proteínas de Bactérias/genética , Comunicação Celular , Genes Bacterianos , Transativadores/genética , Aeromonas/enzimologia , Aeromonas/genética , Proteínas de Bactérias/metabolismo , Chromatiaceae/enzimologia , Chromatiaceae/genética , DNA Bacteriano/isolamento & purificação , Escherichia/enzimologia , Escherichia/genética , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas/enzimologia , Pseudomonas/genética , RNA Ribossômico 16S/isolamento & purificação , República da Coreia , Análise de Sequência de DNA , Serratia/enzimologia , Serratia/genética , Shigella flexneri/enzimologia , Shigella flexneri/genética , Microbiologia do Solo , Transativadores/metabolismo
12.
Biomacromolecules ; 17(4): 1477-85, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26974339

RESUMO

Polyhydroxyalkanoates (PHAs) are carbon and energy storage polymers produced by a variety of microbial organisms under nutrient-limited conditions. They have been considered as an environmentally friendly alternative to oil-based plastics due to their renewability, versatility, and biodegradability. PHA synthase (PhaC) plays a central role in PHA biosynthesis, in which its activity and substrate specificity are major factors in determining the productivity and properties of the produced polymers. However, the effects of modifying the substrate side chain are not well understood because of the difficulty to accessing the desired analogues. In this report, a series of 3-(R)-hydroxyacyl coenzyme A (HACoA) analogues were synthesized and tested with class I synthases from Chromobacterium sp. USM2 (PhaCCs and A479S-PhaCCs) and Caulobacter crescentus (PhaCCc) as well as class III synthase from Allochromatium vinosum (PhaECAv). It was found that, while different PHA synthases displayed distinct preference with regard to the length of the alkyl side chains, they could withstand moderate side chain modifications such as terminal unsaturated bonds and the azide group. Specifically, the specific activity of PhaCCs toward propynyl analogue (HHxyCoA) was only 5-fold less than that toward the classical substrate HBCoA. The catalytic efficiency (kcat/Km) of PhaECAv toward azide analogue (HABCoA) was determined to be 2.86 × 10(5) M(-1) s(-1), which was 6.2% of the value of HBCoA (4.62 × 10(6) M(-1) s(-1)) measured in the presence of bovine serum albumin (BSA). These side chain modifications may be employed to introduce new material functions to PHAs as well as to study PHA biogenesis via click-chemistry, in which the latter remains unknown and is important for metabolic engineering to produce PHAs economically.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Poli-Hidroxialcanoatos/síntese química , Acil Coenzima A/síntese química , Caulobacter crescentus/enzimologia , Chromatiaceae/enzimologia , Chromobacterium/enzimologia
13.
Microb Biotechnol ; 9(2): 245-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26834075

RESUMO

Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity.


Assuntos
Álcalis/metabolismo , Chromatiaceae/enzimologia , Chromatiaceae/isolamento & purificação , Temperatura Baixa , Microbiologia Ambiental , Subtilisinas/metabolismo , Regiões Antárticas , Chromatiaceae/genética , Cromatografia Líquida , Biologia Computacional , Escherichia coli , Genômica , Groenlândia , Proteômica , Análise de Sequência de DNA , Subtilisinas/genética , Espectrometria de Massas em Tandem
14.
Anal Sci ; 31(10): 1069-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26460373

RESUMO

In the present study, we examined the reversible thermal deformation of the membrane protein light-harvesting complex LH2 adsorbed on mesoporous silica (MPS) supports. The LH2 complex from Thermochromatium tepidum cells was conjugated to MPS supports with a series of pore diameter (2.4 to 10.6 nm), and absorption spectra of the resulting LH2/MPS conjugates were observed over a temperature range of 273 - 313 K in order to examine the structure of the LH2 adsorbed on the MPS support. The experimental results confirmed that a slight ellipsoidal deformation of LH2 was induced by adsorption on the MPS supports. On the other hand, the structural stability of LH2 was not perturbed by the adsorption. Since the pore diameter of MPS support did not influence the structural stability of LH2, it could be considered that the spatial confinement of LH2 in size-matches pore did not improve the structural stability of LH2.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Dióxido de Silício/química , Adsorção , Chromatiaceae/enzimologia , Modelos Moleculares , Porosidade , Conformação Proteica , Estabilidade Proteica , Água/química
15.
Biosci Biotechnol Biochem ; 79(7): 1125-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25752188

RESUMO

Cytochrome c' (SACP) from mesophilic Shewanella amazonensis, growing optimally at 37 °C, was thermally more stable than cytochrome c' (AVCP) from mesophilic Allochromatium vinosum, growing optimally at 25 °C. In contrast, SACP was less stable than cytochrome c' (PHCP) from thermophilic Hydrogenophilus thermoluteolus, growing optimally at 52 °C. Although only 28% of the SACP amino acid sequence was identical to those of AVCP and PHCP, the latter two being 55% identical, the overall main chain structures of the three cytochromes c' were similar, and SACP exhibited thermal stability intermediate between those of AVCP and PHCP. For these three proteins, the higher the stability is, the lesser the number of Gly residues in the putative α-helical regions is. Cytochromes c' including the present three are suitable for examining the protein stabilization mechanisms, because they are structurally similar and available from environments with a wide range of temperatures.


Assuntos
Citocromos c/química , Shewanella/enzimologia , Sequência de Aminoácidos , Chromatiaceae/enzimologia , Dicroísmo Circular , Citocromos c/metabolismo , Estabilidade Enzimática , Hydrogenophilaceae/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Homologia de Sequência de Aminoácidos , Shewanella/crescimento & desenvolvimento , Temperatura , Termodinâmica
16.
ACS Chem Biol ; 10(5): 1330-1339, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25686368

RESUMO

Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2-6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 h(-1). This extremely slow rate is due to thermodynamically unfavorable steps that involve the formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2-3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [(3)H]-sT-PhaECAv and HBOCoA yielded [(3)H]-sTet-O-CoA at a rate constant faster than 17.4 s(-1), which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s(-1)). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.


Assuntos
Aciltransferases/metabolismo , Chromatiaceae/enzimologia , Coenzima A/metabolismo , Cromatografia Líquida de Alta Pressão , Coenzima A/química , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
17.
J Biol Chem ; 290(14): 9222-38, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25673691

RESUMO

Although the oxidative condensation of two thiosulfate anions to tetrathionate constitutes a well documented and significant part of the natural sulfur cycle, little is known about the enzymes catalyzing this reaction. In the purple sulfur bacterium Allochromatium vinosum, the reaction is catalyzed by the periplasmic diheme c-type cytochrome thiosulfate dehydrogenase (TsdA). Here, we report the crystal structure of the "as isolated" form of A. vinosum TsdA to 1.98 Šresolution and those of several redox states of the enzyme to different resolutions. The protein contains two typical class I c-type cytochrome domains wrapped around two hemes axially coordinated by His(53)/Cys(96) and His(164)/Lys(208). These domains are very similar, suggesting a gene duplication event during evolution. A ligand switch from Lys(208) to Met(209) is observed upon reduction of the enzyme. Cys(96) is an essential residue for catalysis, with the specific activity of the enzyme being completely abolished in several TsdA-Cys(96) variants. TsdA-K208N, K208G, and M209G variants were catalytically active in thiosulfate oxidation as well as in tetrathionate reduction, pointing to heme 2 as the electron exit point. In this study, we provide spectroscopic and structural evidence that the TsdA reaction cycle involves the transient presence of heme 1 in the high-spin state caused by movement of the Sγ atom of Cys(96) out of the iron coordination sphere. Based on the presented data, we draw important conclusions about the enzyme and propose a possible reaction mechanism for TsdA.


Assuntos
Chromatiaceae/enzimologia , Oxirredutases/metabolismo , Tiossulfatos/metabolismo , Sequência de Bases , Cristalização , Cristalografia por Raios X , Primers do DNA , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Conformação Proteica
18.
PLoS One ; 8(9): e74707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073218

RESUMO

ATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2-)) with ATP to adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase. Like APS reductase, Sat is dispensible for growth on reduced sulfur compounds due to the presence of an alternate, so far unidentified sulfite-oxidizing pathway in A. vinosum. Sulfate assimilation also proceeds independently of Sat by a separate pathway involving a cysDN-encoded assimilatory ATP sulfurylase. We produced the purple bacterial sat-encoded ATP sulfurylase as a recombinant protein in E. coli, determined crucial kinetic parameters and obtained a crystal structure in an open state with a ligand-free active site. By comparison with several known structures of the ATPS-APS complex in the closed state a scenario about substrate-induced conformational changes was worked out. Despite different kinetic properties ATPS involved in sulfur-oxidizing and sulfate-reducing processes are not distinguishable on a structural level presumably due to the interference between functional and evolutionary processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Chromatiaceae/enzimologia , Escherichia coli/enzimologia , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Adenosina Fosfossulfato/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sulfato Adenililtransferase/metabolismo
19.
Microbiology (Reading) ; 159(Pt 12): 2626-2638, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24030319

RESUMO

In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-5'-phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism Allochromatium vinosum indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron-sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of A. vinosum WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in A. vinosum and probably also in other phototrophic sulfur bacteria. The genes also occur in a large number of chemotrophs, indicating a general importance of SoeABC for sulfite oxidation in the cytoplasm. Furthermore, we showed that the periplasmic sulfur substrate-binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective sulfite oxidation in A. vinosum and provided a model for the interplay between these systems despite their localization in different cellular compartments.


Assuntos
Chromatiaceae/enzimologia , Chromatiaceae/metabolismo , Redes e Vias Metabólicas/genética , Sulfitos/metabolismo , Chromatiaceae/genética , Deleção de Genes , Oxirredução , Sulfetos/metabolismo
20.
Biosci Biotechnol Biochem ; 77(8): 1677-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924718

RESUMO

Sequence analysis indicated that thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) and its mesophilic homolog, Allochromatium vinosum cytochrome c' (AVCP), closely resemble each other in a phylogenetic tree of the cytochrome c' family, with 55% sequence identity. The denaturation temperature of PHCP was 87 °C, 35 °C higher than that of AVCP. Furthermore, PHCP exhibited a larger enthalpy change value during its thermal denaturation than AVCP. While AVCP was dimeric, as observed previously, PHCP was trimeric, and this was the first observation as a cytochrome c'. Dissociation of trimeric PHCP and its protein denaturation reversibly occurred at the same time in a two-state transition manner. Therefore, PHCP is enthalpically more stable than AVCP, perhaps due to its unique trimeric form, in addition to the lower number of Gly residues in its putative α-helical regions.


Assuntos
Chromatiaceae/enzimologia , Citocromos c'/química , Estabilidade Enzimática , Hydrogenophilaceae/enzimologia , Sequência de Aminoácidos , Temperatura Alta , Filogenia , Desnaturação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...