Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.193
Filtrar
1.
Front Immunol ; 15: 1432651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086492

RESUMO

Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Cicatrização/imunologia , Homeostase/imunologia , Regeneração/imunologia
2.
Arch Dermatol Res ; 316(8): 548, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162738

RESUMO

The skin, being the body's largest organ, primarily functions as a formidable defense mechanism against potential microbial infections. The skin's microbiota, consisting of a complex assembly of microorganisms, exerts a pivotal influence on skin homeostasis by modulating keratinocytes and their cytokine secretion, thereby playing an integral role in promoting optimal cutaneous health. Leuconostoc mesenteroides finds extensive application in the production of fermented foods and bacteriocins. Empirical studies validate the effectiveness of L. mesenteroides treatments in enhancing immune function and demonstrating notable antioxidant characteristics. This study investigates the potential of L. mesenteroides in improving skin health and wound healing. It also aims to comprehend their impact on wound healing markers, cytokine production, and cell cycle regulation compared to ferulic acid, known for its wound healing effects. Our findings indicate that L. mesenteroides lysate possesses antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa, along with the ability to mitigate their toxic effects in a pathogen-simulating model employing HaCaT keratinocyte cells. Additionally, the lysate demonstrated noteworthy wound closure after a 24-hour treatment, along with a significant reduction in interleukin-6 levels and oxidative stress index. Modulation of the cell cycle is evident by decreasing G0/G1 phases and increasing S and G2/M phases and enhanced expression of wound healing marker genes and proteins CDH1. In conclusion, L. mesenteroides lysate exhibits immune-modulating and antibacterial properties, offering potential alternatives to conventional treatments for various skin conditions. These findings contribute to the exploration of innovative approaches to enhancing human life through skin health and wound healing.


Assuntos
Células HaCaT , Queratinócitos , Leuconostoc mesenteroides , Pseudomonas aeruginosa , Staphylococcus aureus , Cicatrização , Queratinócitos/imunologia , Humanos , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Leuconostoc mesenteroides/imunologia , Leuconostoc mesenteroides/metabolismo , Pseudomonas aeruginosa/imunologia , Antibacterianos/farmacologia , Pele/imunologia , Pele/microbiologia , Pele/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Ciclo Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Linhagem Celular , Citocinas/metabolismo , Interleucina-6/metabolismo
3.
Int Immunopharmacol ; 139: 112638, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079197

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU), affecting a quarter of diabetic patients and leading to high rates of amputation and mortality, pose significant health and economic burdens. Wound healing in DFU is often compromised by chronic inflammation, underscoring the critical role of immune cells. However, the systematic investigation of immune-related genes (IRGs) in DFU pathogenesis remains elusive. To address this gap, our study aims to explore the association between IRGs and DFU. METHODS: To explore biological changes in immune related gene expression in DFU, RNA-seq was performed on wound biopsies derived from 10 DFU patients and 11 healthy controls. Differentially expressed genes (DEGs) between DFU and normal samples were obtained by DEseq2. By intersecting the IRG list from the ImmPort database, the immune-related differentially expressed genes were identified. Function enrichment analysis and protein-protein interaction (PPI) analysis were applied by clusterProfiler and STRING database, and the hub genes of the PPI network were calculated by the cytoHubba plug-ins in Cytoscape. CIBERSORT algorithms was applied to analyze immune infiltration in DFU. And the correlation between immune cells infiltration and hub genes was explored by correlation analysis. Finally, to validate our findings, the transcriptional change of hub genes in DFU was confirmed using external scRNA-seq dataset and RT-qPCR. RESULTS: RNA-seq analysis detected 8,800 DEGs in DFUs, with 2,351 upregulated and 6,449 downregulated.526 differential IRGs were obtained from intersection of DEGs and IRGs. 526 differential IRGs were obtained from intersection of DEGs and IRGs. Enrichment function analysis of DEGs showed that they played a significant role in immune response. The PPI network was constructed, and the most significant module containing 4 hub genes was identified. CIBERSORT analysis showing that there was a significant difference between DFU and normal controls in the infiltration of immune cells. Compared with normal tissue, DFU tissue contained a higher proportion of resting NK cell, M0 macrophages, and activated mast cell, while resting dendritic cell, activated mast cell, and activated NK cell contributed to a relatively lower portion. Additionally, the analysis for M1/M2 polarization of macrophage cells shown that DFU tissue contained a higher M1/M2 ratio than normal group. Finally, the expression levels of 4 hub genes were confirmed by external scRNA-seq dataset and RT-qPCR. CONCLUSIONS: The immune related hub genes and the difference in immune infiltration between DFU tissue and normal controls might provide new insight for understanding DFU healing.


Assuntos
Pé Diabético , Perfilação da Expressão Gênica , Transcriptoma , Humanos , Pé Diabético/genética , Pé Diabético/imunologia , Mapas de Interação de Proteínas , Masculino , Feminino , Pessoa de Meia-Idade , Cicatrização/genética , Cicatrização/imunologia , Idoso
4.
JCI Insight ; 9(12)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912581

RESUMO

Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-ß and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.


Assuntos
Células Dendríticas , Interleucina-6 , Células Th17 , Cicatrização , Animais , Feminino , Humanos , Masculino , Camundongos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos Endogâmicos C57BL , Células Th17/imunologia , Células Th17/metabolismo , Cicatrização/imunologia
6.
J Immunol ; 213(4): 506-518, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940624

RESUMO

Monocytes and macrophages (Mos/Mϕs) play diverse roles in wound healing by adopting a spectrum of functional phenotypes; however, the regulation of such heterogeneity remains poorly defined. We enhanced our previously published Bayesian inference TF activity model, incorporating both single-cell RNA sequencing and single-cell ATAC sequencing data to infer transcription factor (TF) activity in Mos/Mϕs during skin wound healing. We found that wound Mos/Mϕs clustered into early-stage Mos/Mϕs, late-stage Mϕs, and APCs, and that each cluster showed differential chromatin accessibility and differential predicted TF activity that did not always correlate with mRNA or protein expression. Network analysis revealed two highly connected large communities involving a total of 19 TFs, highlighting TF cooperation in regulating wound Mos/Mϕs. This analysis also revealed a small community populated by NR4A1 and NFKB1, supporting a proinflammatory link between these TFs. Importantly, we validated a proinflammatory role for NR4A1 activity during wound healing, showing that Nr4a1 knockout mice exhibit decreased inflammatory gene expression in early-stage wound Mos/Mϕs, along with delayed wound re-epithelialization and impaired granulation tissue formation. In summary, our study provides insight into TF activity that regulates Mo/Mϕ heterogeneity during wound healing and provides a rational basis for targeting Mo/Mϕ TF networks to alter phenotypes and improve healing.


Assuntos
Macrófagos , Camundongos Knockout , Pele , Cicatrização , Animais , Cicatrização/genética , Cicatrização/imunologia , Macrófagos/imunologia , Camundongos , Pele/imunologia , Pele/patologia , Pele/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Camundongos Endogâmicos C57BL , Monócitos/imunologia
7.
Immunol Cell Biol ; 102(6): 429-431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690663

RESUMO

In this article for the Highlights of 2023 Series, we discuss recent research on unconventional T cells with a focus on gamma delta T cell development and cancer cell targeting, as well as the contributions of MAIT cells to wound repair.


Assuntos
Neoplasias , Animais , Humanos , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Neoplasias/imunologia , Linfócitos T/imunologia , Cicatrização/imunologia
8.
Adv Drug Deliv Rev ; 210: 115342, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38797316

RESUMO

Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.


Assuntos
Materiais Biocompatíveis , Nanomedicina , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Animais , Sistema Imunitário , Nanoestruturas
9.
Immunity ; 57(5): 933-935, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749394

RESUMO

Stem cells heal wounds. In this issue of Immunity, Luan et al. demonstrate that epidermal stem cells orchestrate the recruitment of regulatory T (Treg) cells and neutrophils during wound healing. Treg cells facilitate a tolerogenic environment to protect epithelial regeneration while neutrophils promote inflammation to ward off infection.


Assuntos
Neutrófilos , Células-Tronco , Linfócitos T Reguladores , Cicatrização , Cicatrização/imunologia , Humanos , Células-Tronco/imunologia , Linfócitos T Reguladores/imunologia , Animais , Neutrófilos/imunologia
10.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38677291

RESUMO

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Assuntos
Antígeno B7-1 , Folículo Piloso , Inflamação , Pele , Células-Tronco , Linfócitos T Reguladores , Cicatrização , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Cicatrização/imunologia , Pele/imunologia , Pele/lesões , Pele/patologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Inflamação/imunologia , Folículo Piloso/imunologia , Antígeno B7-1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reepitelização/imunologia , Movimento Celular/imunologia , Proliferação de Células
11.
Int J Biol Macromol ; 268(Pt 1): 131643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643918

RESUMO

The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.


Assuntos
Hidrogéis , Macrófagos , Regeneração , Cicatrização , Hidrogéis/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Humanos , Animais , Regeneração/imunologia , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Engenharia Tecidual , Imunomodulação/efeitos dos fármacos
12.
Adv Sci (Weinh) ; 11(24): e2309725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647360

RESUMO

The interplay between bacteria and their host influences the homeostasis of the human immune microenvironment, and this reciprocal interaction also affects the process of tissue damage repair. A variety of immunomodulatory commensal bacteria reside in the body, capable of delivering membrane vesicles (MVs) to host cells to regulate the local immune microenvironment. This research revealed, for the initial time, the significant enhancement of mucosal and cutaneous wound healing by MVs secreted by the human commensal Lactobacillus reuteri (RMVs) through modulation of the inflammatory environment in wound tissue. Local administration of RMVs reduces the proportion of pro-inflammatory macrophages in inflamed tissues and mitigates the level of local inflammation, thereby facilitating the healing of oral mucosa and cutaneous wounds. The elevated oxidative stress levels in activated pro-inflammatory macrophages can be modulated by RMVs, resulting in phenotypic transformation of macrophages. Furthermore, 3-hydroxypropionaldehyde present in RMVs can decrease the mitochondrial permeability of macrophages and stabilize the mitochondrial membrane potential, thereby promoting the conversion of macrophages to an anti-inflammatory phenotype. This study pioneers the significance of commensal bacterial MVs in tissue injury repair and presents a novel concept for the repair of tissue damage.


Assuntos
Limosilactobacillus reuteri , Macrófagos , Mitocôndrias , Cicatrização , Macrófagos/imunologia , Macrófagos/metabolismo , Cicatrização/imunologia , Cicatrização/fisiologia , Animais , Camundongos , Mitocôndrias/metabolismo , Humanos , Modelos Animais de Doenças , Pele/microbiologia , Pele/imunologia , Pele/metabolismo
13.
J Invest Dermatol ; 144(6): 1208-1216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678465

RESUMO

IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.


Assuntos
Homeostase , Interleucina-17 , Pele , Humanos , Interleucina-17/metabolismo , Interleucina-17/imunologia , Homeostase/imunologia , Pele/imunologia , Pele/metabolismo , Animais , Cicatrização/imunologia , Cicatrização/fisiologia , Dermatopatias/imunologia
14.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668758

RESUMO

Regulatory T (Treg) cells are classically known for their critical immunosuppressive functions that support peripheral tolerance. More recent work has demonstrated that Treg cells produce pro-repair mediators independent of their immunosuppressive function, a process that is critical to repair and regeneration in response to numerous tissue insults. These factors act on resident parenchymal and structural cells to initiate repair in a tissue-specific context. This review examines interactions between Treg cells and tissue-resident non-immune cells-in the context of tissue repair, fibrosis, and cancer-and discusses areas for future exploration.


Assuntos
Comunicação Celular , Regeneração , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Humanos , Animais , Regeneração/fisiologia , Comunicação Celular/imunologia , Cicatrização/imunologia , Fibrose , Neoplasias/imunologia , Neoplasias/patologia
15.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eferocitose , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
16.
Int J Nanomedicine ; 18: 3643-3662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427367

RESUMO

Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.


Assuntos
Cicatriz , Exossomos , Sistema Imunitário , Imunomodulação , Células-Tronco Mesenquimais , Humanos , Cicatriz/imunologia , Cicatriz/patologia , Cicatriz/terapia , Exossomos/imunologia , Exossomos/patologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunomodulação/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Cicatrização/imunologia
17.
Clin Transl Med ; 13(4): e1233, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37029786

RESUMO

BACKGROUND: Closing mucosal defects to reach mucosal healing is an important goal of therapy in inflammatory bowel disease (IBD). Among other cells, monocyte-derived macrophages are centrally involved in such intestinal wound healing. We had previously demonstrated that the anti-α4ß7 integrin antibody vedolizumab blocks the recruitment of non-classical monocytes as biased progenitors of wound healing macrophages to the gut and delays wound healing. However, although important for the interpretation of disappointing results in recent phase III trials in IBD, the effects of the anti-ß7 antibody etrolizumab on wound healing are unclear so far. METHODS: We analyzed the expression of etrolizumab targets on human and mouse monocyte subsets by flow cytometry and assessed their function in adhesion and homing assays. We explored wound-associated monocyte recruitment dynamics with multi-photon microscopy and compared the effects of etrolizumab and vedolizumab surrogate (-s) antibodies on experimental wound healing and wound-associated macrophage abundance. Finally, we investigated wound healing macrophage signatures in the large intestinal transcriptome of patients with Crohn's disease treated with etrolizumab. RESULTS: Human and mouse non-classical monocytes expressed more αEß7 integrin than classical monocytes and were a target of etrolizumab-s, which blocked non-classical monocyte adhesion to MAdCAM-1 and E-Cadherin as well as gut homing in vivo. Intestinal wound healing was delayed on treatment with etrolizumab-s along with a reduction of peri-lesional wound healing macrophages. Wound healing macrophage signatures in the colon of patients with Crohn's disease were substantially down-regulated on treatment with etrolizumab, but not with placebo. CONCLUSIONS: Combined blockade of αEß7 and α4ß7 with etrolizumab seems to exceed the effect of anti-α4ß7 treatment on intestinal wound healing, which might help to inform further investigations to understand the recent observations in the etrolizumab phase III trial program.


Assuntos
Fármacos Gastrointestinais , Doenças Inflamatórias Intestinais , Integrinas , Macrófagos , Cicatrização , Animais , Humanos , Camundongos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Doença de Crohn/patologia , Fármacos Gastrointestinais/imunologia , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia
18.
J Cosmet Dermatol ; 22 Suppl 1: 8-14, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36988471

RESUMO

BACKGROUND: Skin aging arises from immunological responses to tissue deterioration and damage. Tissue repair processes encompass the regeneration of original tissue and 'scarless' wound healing seen in foetuses, and the extreme fibrotic responses and scarring seen in adults. Anti-aging aesthetic medicine uses interventions like biomaterial-based fillers to influence these immunological responses and renew aged tissue structure and function. At filler injection sites, an inflammatory response occurs that causes a spectrum of outcomes, ranging from tissue regeneration to fibrosis and filler encapsulation. Importantly, the resulting inflammatory pathway can be predetermined by the biomaterial injected. AIMS: By understanding this immunological process, we can develop Aesthetic Regenerative Scaffolds (ARS) - aesthetic injectable biomaterials - to direct inflammatory wound healing away from chronic, fibrotic responses, and towards physiological tissue regeneration. MATERIALS AND METHODS: We identified and reviewed literature on the immunological and cellular responses to injected dermal fillers, whereby the wound healing response to the injection was moderated under the influence of an injected biomaterial. RESULTS: We described the mechanisms of dermal wound healing and the use of ARS to direct healing towards tissue regeneration instead of scarring. We also summarised studies on extracellular matrix remodeling by calcium hydroxylapatite. We found that Calcium hydroxylapatite fillers produce collagen as they gradually degrade and their spherical structures serve as a scaffold for tissue regeneration. Furthermore, CaHA improved fibroblast contractility, collagen type III and elastin production, proliferation and angiogenesis with less inflammation than hyaluronic acid fillers. DISCUSSION: Regneration pathways can be influenced at specific points between a facial filler biomaterial and the wound healingmechanisms at its site of implantaion. CONCLUSION: Physicians can select scaffolds that direct the immune response away from a fibrotic chronic inflammatory pathway and towards regeneration to enable true repair of the aging skin.


Assuntos
Materiais Biocompatíveis , Cicatriz , Durapatita , Regeneração , Envelhecimento da Pele , Alicerces Teciduais , Adulto , Idoso , Humanos , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/provisão & distribuição , Cicatriz/etiologia , Cicatriz/prevenção & controle , Colágeno/metabolismo , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Cicatrização/fisiologia , Envelhecimento da Pele/imunologia , Envelhecimento da Pele/fisiologia , Regeneração/imunologia , Regeneração/fisiologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Matriz Extracelular/fisiologia
19.
Fish Shellfish Immunol ; 134: 108647, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36842641

RESUMO

Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.


Assuntos
Bass , Desenvolvimento Embrionário , Pele , Temperatura , Cicatrização , Animais , Desenvolvimento Embrionário/fisiologia , Embrião não Mamífero , Pele/imunologia , Pele/lesões , Cicatrização/genética , Cicatrização/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata/genética , Epigênese Genética/imunologia
20.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214222

RESUMO

Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.


Assuntos
Proteínas CELF1 , Colite , Homeostase , Mucosa Intestinal , RNA Longo não Codificante , Cicatrização , Animais , Apoptose , Proteínas CELF1/genética , Proteínas CELF1/imunologia , Colite/genética , Colite/imunologia , Homeostase/genética , Homeostase/imunologia , Mucosa Intestinal/imunologia , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Cicatrização/genética , Cicatrização/imunologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA