Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4003, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183663

RESUMO

Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones.


Assuntos
Avicennia/crescimento & desenvolvimento , Tempestades Ciclônicas , Ciclo Hidrológico/fisiologia , Conservação dos Recursos Naturais , Florida , Hidrologia , Lagoas , Imagens de Satélites , Áreas Alagadas
2.
PLoS One ; 16(2): e0236974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606693

RESUMO

Water is vital for the survival of any species because of its key role in most physiological processes. However, little is known about the non-food-related water sources exploited by arboreal mammals, the seasonality of their drinking behavior and its potential drivers, including diet composition, temperature, and rainfall. We investigated this subject in 14 wild groups of brown howler monkeys (Alouatta guariba clamitans) inhabiting small, medium, and large Atlantic Forest fragments in southern Brazil. We found a wide variation in the mean rate of drinking among groups (range = 0-16 records/day). Streams (44% of 1,258 records) and treeholes (26%) were the major types of water sources, followed by bromeliads in the canopy (16%), pools (11%), and rivers (3%). The type of source influenced whether howlers used a hand to access the water or not. Drinking tended to be evenly distributed throughout the year, except for a slightly lower number of records in the spring than in the other seasons, but it was unevenly distributed during the day. It increased in the afternoon in all groups, particularly during temperature peaks around 15:00 and 17:00. We found via generalized linear mixed modelling that the daily frequency of drinking was mainly influenced negatively by flower consumption and positively by weekly rainfall and ambient temperature, whereas fragment size and the consumption of fruit and leaves played negligible roles. Overall, we confirm the importance of preformed water in flowers to satisfy the howler's water needs, whereas the influence of the climatic variables is compatible with the 'thermoregulation/dehydration-avoiding hypothesis'. In sum, we found that irrespective of habitat characteristics, brown howlers seem to seek a positive water balance by complementing the water present in the diet with drinking water, even when it is associated with a high predation risk in terrestrial sources.


Assuntos
Alouatta/metabolismo , Comportamento de Ingestão de Líquido/fisiologia , Animais , Brasil , Dieta , Ingestão de Líquidos , Ingestão de Alimentos , Ecossistema , Comportamento Alimentar , Flores , Florestas , Frutas , Chuva , Estações do Ano , Temperatura , Água , Ciclo Hidrológico/fisiologia , Abastecimento de Água
3.
PLoS One ; 15(2): e0228537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32049986

RESUMO

Urbanization modifies land surface characteristics with consequent impacts on local energy, water, and carbon dioxide (CO2) fluxes. Despite the disproportionate impact of cities on CO2 emissions, few studies have directly quantified CO2 conditions for different urban land cover patches, in particular for arid and semiarid regions. Here, we present a comparison of eddy covariance measurements of CO2 fluxes (FC) and CO2 concentrations ([CO2]) in four distinct urban patches in Phoenix, Arizona: a xeric landscaping, a parking lot, a mesic landscaping, and a suburban neighborhood. Analyses of diurnal, daily, and seasonal variations of FC and [CO2] were related to vegetation activity, vehicular traffic counts, and precipitation events to quantify differences among sites in relation to their urban land cover characteristics. We found that the mesic landscaping with irrigated turf grass was primarily controlled by plant photosynthetic activity, while the parking lot in close proximity to roads mainly exhibited the signature of vehicular emissions. The other two sites that had mixtures of irrigated vegetation and urban surfaces displayed an intermediate behavior in terms of CO2 fluxes. Precipitation events only impacted FC in urban patches without outdoor water use, indicating that urban irrigation decouples CO2 fluxes from the effects of infrequent storms in an arid climate. These findings suggest that the proportion of irrigated vegetation and urban surfaces fractions within urban patches could be used to scale up CO2 fluxes to a broader city footprint.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/química , Poaceae/fisiologia , Chuva , Solo , Urbanização , Arizona , Dióxido de Carbono/análise , Cidades , Clima Desértico , Humanos , Estações do Ano , Solo/química , Fatores de Tempo , Emissões de Veículos/análise , Ciclo Hidrológico/fisiologia
4.
J Plant Physiol ; 227: 1-2, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29960803

RESUMO

Vascular plants are major intermediaries in the global water cycle, and are highly adapted to both facilitate and resist water fluxes, such as during root uptake, translocation in the xylem, and transpiration by leaves. Here, we summarize the contributions to a Special Issue on water in the Journal of Plant Physiology, which cluster around the theme of control and facilitation of water movement in plants. We conclude with an editorial view of the need for plant physiologists to consider larger cultural issues surrounding water use, especially in terms of the increasing agricultural demand for water to produce animal feed, with its associated trophic nutritive losses and environmental damage.


Assuntos
Aquaporinas/fisiologia , Ecossistema , Plantas/metabolismo , Ciclo Hidrológico , Fenômenos Fisiológicos Vegetais , Água/metabolismo , Ciclo Hidrológico/fisiologia
5.
J Photochem Photobiol B ; 168: 59-66, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28171808

RESUMO

The water-water cycle (WWC) is thought to dissipate excess excitation energy and balance the ATP/NADPH energy budget under some conditions. However, the importance of the WWC in photosynthetic regulation remains controversy. We observed that three Camellia cultivars exhibited high rates of photosynthetic electron flow under high light when photosynthesis was restricted. We thus tested the hypothesis that the WWC is a major electron sink in the three Camellia cultivars when CO2 assimilation is restricted. Light response curves indicated that the WWC was strongly increased with photorespiration and was positively correlated with extra ATP supplied from other flexible mechanisms excluding linear electron flow, implying that the WWC is an important alternative electron sink to balance ATP/NADPH energy demand for sustaining photorespiration in Camellia cultivars. Interestingly, when photosynthesis was depressed by the decreases in stomatal and mesophyll conductance, the rates of photosynthetic electron flow through photosystem II declined slightly and the rates of WWC was enhanced. Furthermore, the increased electron flow of WWC was positively correlated with the ratio of Rubisco oxygenation to carboxylation, supporting the involvement of alternative electron flow in balancing the ATP/NADPH energy budget. We propose that the WWC is a crucial electron sink to regulate ATP/NADPH energy budget and dissipate excess energy excitation in Camellia species when CO2 assimilation is restricted.


Assuntos
Camellia/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Ciclo Hidrológico/fisiologia , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , NADP/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
6.
Rapid Commun Mass Spectrom ; 30(1): 175-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26661985

RESUMO

RATIONALE: The small river basins in the narrow stretch of the Arabian Sea coast of southwest India experience high annual rainfall (800-8000 mm), with a higher proportion (85 %) during the summer monsoon period between June and September. This is due to a unique orographic barrier provided by the Western Ghats mountain belt (600-2600 m) for the summer monsoon brought by the southwesterly winds. This study is the first of a kind focusing on the water cycle with an intensive stable isotopes approach (samples of river water, groundwater, rainwater; seasonal and spatial sampling) in this part of the Western Ghats in Karnataka and also in the highest rainfall-receiving region (with places like Agumbe receiving 7000-8000 mm annual rainfall) in South India. In addition, the region lacks sustainable water budgeting due to high demographic pressure and a dry pre-monsoon season as the monsoon is mainly unimodal in this part of India, particularly close to the coast. METHODS: The stable isotopic compositions of groundwater, river water and rainwater in two tropical river basins situated approximately 60 km apart, namely the Swarna near Udupi and the Nethravati near Mangalore, were studied from 2010 to 2013. The δ(18)O and δ(2)H values of the water samples were measured by isotope ratio mass spectrometry, and the d-excess values calculated to better understand the dominant source of the water and the influence of evaporation/recycling processes. RESULTS: The water in the smaller area basin (Swarna basin) does not show seasonal variability in the δ(18)O values for groundwater and river water, having a similar mean value of -3.1 ‰. The d-excess value remains higher in both wet and dry seasons suggesting strong water vapor recycling along the foothills of the Western Ghats. In contrast, the larger tropical basin (Nethravati basin) displays specific seasonal isotopic variability. The observation of higher d-excess values in winter with lower δ(18)O values suggests an influence of northeast winter monsoon water in the larger basin. CONCLUSIONS: The narrow coastal strip to the west of the Western Ghats displays unique water characteristics in both tropical river basins investigated. For the smaller and hilly Swarna basin, the dense vegetation (wet canopies) could largely re-evaporate the (intercepted) rain, leading to no marked seasonal or altitude effect on the water isotope values within the basin. The larger Nethravati basin, which stretches farther into the foothills of the Western Ghats, receives winter monsoon water, and thus exhibits a clear seasonal variability in rainfall moisture sources. The degree of water vapor recycling in these wet tropical basins dominates the isotopic composition in this narrow coastal stretch of South India. An insight into the soil water contribution to the river water and groundwater, even in the rainfall-dependent tropical basins of South India, is provided in this study.


Assuntos
Rios/química , Ciclo Hidrológico/fisiologia , Monitoramento Ambiental , Umidade , Índia , Isótopos/análise , Espectrometria de Massas , Chuva
7.
Glob Chang Biol ; 21(1): 335-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044242

RESUMO

Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.


Assuntos
Clima , Pradaria , Fenômenos Fisiológicos Vegetais , Chuva , Ciclo Hidrológico/fisiologia , Análise de Variância , Meio-Oeste dos Estados Unidos , Fotossíntese/fisiologia , Especificidade da Espécie
8.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156251

RESUMO

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Mudança Climática , Florestas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Ciclo Hidrológico/fisiologia , Isótopos de Carbono/análise , Europa (Continente) , Geografia , Fatores de Tempo
9.
Philos Trans A Math Phys Eng Sci ; 368(1931): 5151-72, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20956366

RESUMO

This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.


Assuntos
Mudança Climática , Abastecimento de Água , Conservação dos Recursos Naturais , Previsões , Jordânia , Modelos Teóricos , Rios , Estações do Ano , Ciclo Hidrológico/fisiologia , Movimentos da Água , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...