Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
1.
Sci Rep ; 14(1): 11291, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760355

RESUMO

In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1ß. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1ß, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1ß during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1ß-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1ß-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1ß-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.


Assuntos
Ciclo-Oxigenase 2 , Interleucina-1beta , Inulina , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II , Inulina/química , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/química , Interleucina-1beta/metabolismo , Animais , Simulação de Dinâmica Molecular , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Ligação Proteica , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Fator de Necrose Tumoral alfa/metabolismo
2.
Org Biomol Chem ; 22(18): 3708-3724, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639206

RESUMO

Despite the high global prevalence, rheumatoid arthritis lacks a satisfactory treatment. Hence, the present study is undertaken to design and synthesize novel anti-inflammatory compounds. For this, quinoline and anthranilic acid, two medicinally-privileged moieties, were linked by pharmacophore hybridization, and following their computational assessments, three hybrids 5a-c were synthesized in good over all yields. The in vitro and in vivo anti-inflammatory potential of these hybrids was determined by anti-denaturation and anti-proteinase, and carrageenan-induced paw edema models. The computational studies of these hybrids revealed their drug-likeness, optimum pharmacokinetics, and less toxicity. Moreover, they demonstrated high binding affinity (-9.4 to -10.6 kcal mol-1) and suitable binding interactions for TNF-α, FLAP, and COX-II. A three-step synthetic route resulted in the hybrids 5a-c with 83-86% yield of final step. At 50 µg mL-1, the antiprotease and anti-denaturation activity of compound 5b was significantly higher than 5a and 5c. Furthermore, 5b significantly reduced the edema in the right paw of the rats that received carrageenan. The results of this study indicate the medicinal worth of the novel hybrids in treating inflammatory disorders such as rheumatoid arthritis.


Assuntos
Desenho de Fármacos , Edema , Simulação de Acoplamento Molecular , Quinolinas , ortoaminobenzoatos , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Animais , Edema/tratamento farmacológico , Edema/induzido quimicamente , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/síntese química , Ratos , Carragenina , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Estrutura Molecular , Ratos Wistar , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/química
3.
J Mol Graph Model ; 129: 108747, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447296

RESUMO

Cyclooxygenases 1 and 2 (COX-1/2) are enzymes renowned for inducing inflammatory responses through the production of prostaglandins. Thus, the development of COX inhibitors has been a promising approach for identifying compounds with anti-inflammatory potential. In this study, we designed 27 new compounds (1-27) based on the structure of a previously known COX inhibitor, using the Ligand Designer tool. Our aim was to improve the affinity of the compounds with COX enzymes by inducing interactions with residue Arg120 while retaining the good π-π stacking interactions of the chromene-phenyl scaffold. Through screening based on ligand-binding free energy defined by molecular docking simulations and MM/GBSA technique, compounds 9 and 10 were identified as having the highest ability to inhibit COX proteins. The binding affinities of the two compounds with COX-1/2 were superior to those of the original NAI10 compound and the reference drug indomethacin. Our virtual screening suggests that compounds 9 and 10 have a strong ability to inhibit COX-1/2 and thus could be promising candidates for further anti-inflammatory drug studies. In essence, our study underscores the pivotal role of the N-aryl iminocoumarin scaffold in shaping the future landscape of novel anti-inflammatory drug development.


Assuntos
Anti-Inflamatórios , Inibidores de Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Ligantes , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química
4.
Comput Biol Med ; 171: 108164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412690

RESUMO

Inflammation plays a pivotal role in various pathological processes, ranging from routine injuries and infections to cancer. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are two major enzymes involved in the formation of lipid mediators of inflammation, such as prostaglandins and leukotrienes, through the arachidonic acid pathway. Despite the frequent use of nonsteroidal anti-inflammatory drugs for managing inflammatory disorders by inhibiting these enzymes, there is a wide spectrum of adverse effects linked to their usage. Jeevaneeya Rasayana (JR), a polyherbal formulation traditionally used in India, is renowned for its anti-inflammatory properties. The present study aimed to identify the potential phytocompounds in JR plants against COX-2 and 5-LOX, utilizing molecular docking and dynamic simulations. Among the 429 identified phytocompounds retrieved from publicly available data sources, Terrestribisamide and 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine have shown potential binding affinity and favorable interactions with COX-2 and 5-LOX arachidonic acid binding sites. The physicochemical properties and ADMET profiles of these compounds determined their drug-likeness and pharmacokinetics features. Additional validation using molecular dynamics simulations, SASA, Rg, and MM-PBSA binding energy calculations affirmed the stability of the complex formed between those compounds with target proteins. Together, the study identified the effectual binding potential of those bioactive compounds against COX-2 and 5-LOX, providing a viable approach for the development of effective anti-inflammatory medications.


Assuntos
Anti-Inflamatórios , Inflamação , Extratos Vegetais , Humanos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/uso terapêutico , Simulação de Acoplamento Molecular , Ácido Araquidônico/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/uso terapêutico
5.
Future Med Chem ; 15(23): 2209-2233, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095081

RESUMO

Inhibitors of COX-2 constitute a class of anti-inflammatory analgesics, showing potential against certain types of cancer. However, such inhibitors are associated with cardiovascular toxicity. Moreover, although single-target molecules possess specificity for particular targets, they often lead to poor safety, low efficacy and drug resistance due to compensatory mechanisms. A new generation of dual-target drugs that simultaneously inhibit COX-2 and another target is showing strong potential to treat cancer or reduce adverse cardiac effects. The present perspective focuses on the structure and functions of COX-2, and its role as a therapeutic target. It also explores the current state and future possibilities for dual-target strategies from a medicinal chemistry perspective.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Modelos Moleculares , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico
6.
J Mol Recognit ; 36(7): e3025, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191245

RESUMO

Cyclooxygenase, also known as prostaglandin H2 synthase (PGH2), is one of the most important enzymes in pharmacology because inhibition of COX is the mechanism of action of most nonsteroidal anti-inflammatory drugs. In this study, ten thiazole derivative compounds had synthesized. The analysis of the obtained compounds was performed by 1 H NMR and 13 C NMR methods. By this method, the obtained compounds could be elucidated. The inhibitory effect of the obtained compounds on cyclooxygenase (COX) enzymes was investigated. The encoded compounds 5a, 5b, and 5c were found to be the most potent compared to the reference compounds ibuprofen (IC50 = 5.589 ± 0.278 µM), celecoxib (IC50 = 0.132 ± 0.004 µM), and nimesulide (IC50 = 1.692 ± 0.077 µM)against COX-2 isoenzyme. The inhibitory activity of 5a, 5b, and 5c is approximate, but the 5a derivative proved to be the most active in the series with an IC50 value of 0.180 ± 0.002 µM. The most potent COXs inhibitor was 5a, which was further investigated for its potential binding mode by a molecular docking study. Compound 5a was found to be localized at the active site of the enzyme, like celecoxib, which has a remarkable effect on COXs enzymes.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Farmacóforo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Celecoxib , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular
7.
J Mol Model ; 29(6): 192, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256432

RESUMO

BACKGROUND: Inflammation-provoked disorders including cancer are arbitrated by cyclooxygenase-2 (COX-2). Celecoxib and niflumic acid are among the potent and selective inhibitors of this enzyme while aspirin (acetylsalicylic acid) and sodium salicylate are its non-selective and lesser potent inhibitors. Despite these proven studies, the comparative structural study of these selective and non-selective molecules at atomistic scale in complex state with COX-2 that may answer this differential inhibitory behavior has not been accomplished spotlighting the imperative need of additional research in this area. Thus, this study was framed to provide a strong explanation for the enigma of higher inhibitory activity of celecoxib-niflumic acid duo in comparison to aspirin and sodium salicylate towards COX-2. METHODS: A contemporary approach including advanced molecular docking against COX2, molecular dynamics of receptor-ligand complexes, simulation-trajectory-backed MMGBSA for different time points, radius of gyration (Rg) calculations, and e-pharmacophores approach was employed to attain a rational conclusion. RESULTS: Our findings demonstrated the higher binding affinity of celecoxib and niflumic acid over aspirin and sodium salicylate against COX-2. Although both selective and non-selective COX-2 inhibitors manifested nearly the same stability in the active site of this enzyme but the e-pharmocophoric features found in the case of selective inhibitors scored over non-selective ones. Thus, our findings excluded the differential stability to be the cause of stronger potency of selective inhibitors but attributed their potency to greater number of complementary features present in these inhibitors against the active site of inflammation engendering COX-2.


Assuntos
Anti-Inflamatórios não Esteroides , Salicilato de Sódio , Humanos , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/química , Celecoxib/farmacologia , Salicilato de Sódio/farmacologia , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Farmacóforo , Ácido Niflúmico , Aspirina/farmacologia , Inflamação
8.
J Biomol Struct Dyn ; 41(19): 9915-9930, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36444967

RESUMO

Computer-based drug design is increasingly used in strategies for discovering new molecules for therapeutic purposes. The targeted drug is ketoprofen (KTP), which belongs to the family of non-steroidal anti-inflammatory drugs, which are widely used for the treatment of pain, fever, inflammation and certain types of cancers. In an attempt to rationalize the search for 72 new potential anti-inflammatory compounds on the COX-2 enzyme, we carried out an in silico protocol that successfully combines molecular docking towards COX-2 receptor (5F1A), ADMET pharmacokinetic parameters, drug-likeness rules and molecular electrostatic potential (MEP). It was found that six of the compounds analyzed satisfy with the associated values to physico-chemical properties as key evaluation parameters for the drug-likeness and demonstrate a hydrophobic character which makes their solubility in aqueous media difficult and easy in lipids. All the compounds presented good ADMET profile and they showed an interaction with the amino acids responsible for anti-inflammatory activity of the COX-2 isoenzyme. The calculation of the MEP of the six analogues reveals new preferential sites involving the formation of new bonds. Consequently, this result allowed us to understand the origin of the potential increase in the anti-inflammatory activity of the candidates. Finally, it was obtained that six compounds have a binding mode, binding energy, and stability in the active site of COX-2 like the reference drug ketoprofen, suggesting that these compounds could become a powerful candidate in the inhibition of the COX-2 enzyme.Communicated by Ramaswamy H. Sarma.


Assuntos
Cetoprofeno , Humanos , Cetoprofeno/farmacologia , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
9.
J Biomol Struct Dyn ; 41(20): 10840-10850, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36576262

RESUMO

Cyclooxygenase 2 (COX-2), the key enzyme involved in prostaglandin (PGs) production, is known to take part in inflammatory and immune responses. Though COX-2 inhibitors are therapeutically effective anti-inflammatory drugs, they deficit anti-thrombotic activity thus leading to increased cardiovascular diseases. Therefore, COX-2 inhibitors with improved therapeutic efficacy and tolerance are still needed. In recent years, traditional medicine systems have paid attention to the essential oil of genus Zingiber, particularly for the treatment of various inflammatory illnesses, with lesser side effects. Thus, the present study aims to explore the anti-inflammatory activity of Zingiber essential oil through computational-biology approaches. In this regard, virtual screening, molecular docking, and simulations were carried out on 53 compounds derived from the essential oil of Zingiber species in order to provide mechanistic insights into COX-2 inhibition and identify the most actively potent anti-inflammatory compounds. Among all the docked ligands, epi-cubenol, δ-cadinene, γ-eudesmol, cubenol, and α-terpineol were found to be powerful bioactive compounds with an increased binding affinity towards COX-2 along with favorable physiochemical properties. Additionally, MD simulation in DPPC lipid bilayers was studied to examine the intrinsic dynamics and adaptability of the chosen ligands and COX-2-complexes. The findings showed that the selected five components interacted steadily with the COX-2 active site residues throughout the simulation via different bondings. The integrative-computational approach showed that the identified natural compounds may be taken into further consideration for potential in vitro and in vivo evaluation as COX-2 inhibitors, which would lead to the development of more potent and efficient anti-inflammatory drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Óleos Voláteis , Ciclo-Oxigenase 2/química , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2/química , Simulação de Dinâmica Molecular , Terpenos/farmacologia , Anti-Inflamatórios/farmacologia , Óleos Voláteis/farmacologia
10.
J Biomol Struct Dyn ; 41(8): 3511-3523, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297321

RESUMO

One-fifth of COVID-19 patients suffer a severe course of COVID-19 (SARS-CoV-2) infection; however, the specific causes remain unclear. Despite numerous papers that have been flooded in different scientific journals clear clinical picture of COVID-19 aftermath persists to remain fuzzy. The survivors of severe COVID-19infection having defeated the virus are just the starting of an uncharted recovery path. Currently, there is no drug available that is safe to consume to combat this pandemic. However, researchers still struggling to find specific therapeutic solutions. The present study employed an in silico approach to assessing the inhibitory potential of the phytochemicals obtained from GC-MS analysis of Citrus macroptera against inflammatory proteins like COX-2, NMDAR and VCAM-1 which remains in a hyperactive state even after a patient is fully cured of this deadly mRNA virus. An extensive molecular docking investigation of the phyto-compounds at the active binding pockets of the inflammatory proteins revealed the promising inhibitory potential of the phytochemicals. Reasonable physicochemical attributes of the compounds following Lipinski's rule of five, VEBER and PAINS analysis further established them as potential therapeutic candidates against aforesaid inflammatory proteins. MM-GBSA binding free energy estimation revealed that Limonene was the most promising candidate displaying the highest binding efficacy with the concerned VCAM-1 protein included in the present analysis. An interesting finding is the phytochemicals exhibited better binding energy scores with the concerned COX-2, VCAM-1 and NMDA receptor proteins than the conventional drugs that are specifically targeted against them. Our in silico results suggest that all the natural phyto-compounds derived from C. macroptera could be employed in Post covid inflammation complexities after appropriate pre-clinical and clinical trials for further scientific validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Citrus , Limoneno , Compostos Fitoquímicos , Extratos Vegetais , Síndrome de COVID-19 Pós-Aguda , Citrus/química , Humanos , COVID-19/complicações , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Síndrome de COVID-19 Pós-Aguda/tratamento farmacológico , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Desenvolvimento de Medicamentos , Ciclo-Oxigenase 2/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Ligação Proteica , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase 2/química , Limoneno/química , Limoneno/farmacologia
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121800, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067623

RESUMO

Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood. In this study, we firstly estimated the preventive role of THF against hypoxia-induced right ventricular dysfunction. Metabolomics analysis showed there were differential metabolites involved in above process, which helped us to screen the crucial regulated enzymes of these metabolites. Molecular docking and multi-spectroscopic revealed the molecular mechanism of interaction between THF and COX/LOX. Results suggested that THF bound to COX/LOX through static quenching and these bindings were driven by hydrogen bonds. After binding with THF, the secondary structure of COX/LOX was changed. In general, this study indicated that THF inhibited COX/LOX by spontaneously forming complexes with them.


Assuntos
Lipoxigenase , Disfunção Ventricular Direita , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Humanos , Hipóxia , Quempferóis , Metabolômica , Simulação de Acoplamento Molecular
12.
Chin J Nat Med ; 20(4): 309-320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35487601

RESUMO

A series of 26 novel derivatives have been synthesized through structural modification of gentiopicroside, a lead COX-2 inhibitor. And their in vivo and in vitro anti-inflammatory activities have been investigated. The in vitro anti-inflammatory activities were evaluated against NO, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by LPS. Results showed that most compounds had good inhibitory activity. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Results demonstrated that several compounds were more active than the parent compound gentiopicroside. The inhibition rate of the most active compound P23 (57.26%) was higher than positive control drug celecoxib (46.05%) at dose 0.28 mmol·kg-1. Molecular docking suggested that these compounds might bind to COX-2 and iNOS. Some of them, e.g P7, P14, P16, P21, P23, and P24, had high docking scores in accordance with their potency of the anti-inflammatory activitiy, that downregulation of the inflammatory factors, NO, PGE2, and IL-6, was possibly associated with the suppression of iNOS and COX-2. Therefore, these gentiopicroside derivatives may represent a novel class of COX-2 and iNOS inhibitors.


Assuntos
Interleucina-6 , Piridinolcarbamato , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/química , Dinoprostona , Interleucina-6/metabolismo , Glucosídeos Iridoides , Camundongos , Simulação de Acoplamento Molecular
13.
PLoS One ; 17(1): e0258980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085233

RESUMO

In this study, 5 sterols were isolated and purified from Laminaria japonica, commonly known as edible brown seaweed, and their structures were identified based on detailed chemical methods and spectroscopic analyses. Spectroscopic analyses characterized 5 sterols as 29-Hydroperoxy-stigmasta-5,24(28)-dien-3ß-ol, saringosterol (24-vinyl-cholest-5-ene-3ß,24-diol), 24-methylenecholesterol, fucosterol (stigmasta-5,24-diene-3ß-ol), and 24-Hydroperoxy-24-vinyl-cholesterol. The bioactivities of these sterols were tested using lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2) enzyme inhibitory assays. Fucosterol exhibited the highest COX-1 and -2 enzyme inhibitory activities at 59 and 47%, respectively. Saringosterol, 24-methylenecholesterol and fucosterol showed higher LPO inhibitory activity at >50% than the other compounds. In addition, the results of molecular docking revealed that the 5 sterols were located in different pocket of COX-1 and -2 and fucosterol with tetracyclic skeletons and olefin methine achieved the highest binding energy (-7.85 and -9.02 kcal/mol) through hydrophobic interactions and hydrogen bond. Our results confirm the presence of 5 sterols in L. japonica and its significant anti-inflammatory and antioxidant activity.


Assuntos
Colesterol/análogos & derivados , Inibidores de Ciclo-Oxigenase/farmacologia , Laminaria/química , Peroxidação de Lipídeos/efeitos dos fármacos , Esteróis/farmacologia , Colesterol/química , Colesterol/farmacologia , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Esteróis/química , Estigmasterol/análogos & derivados , Estigmasterol/química , Estigmasterol/farmacologia
14.
J Biomol Struct Dyn ; 40(3): 1189-1204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32990169

RESUMO

Inflammation is a key factor linked to almost all chronic and degenerative diseases implicit with certain levels of pain. In studies, over the past few years, it has been discovered that prostaglandins are the main cause of this inflammation and therefore could be blocked. Although no steroidal medications can be effective, natural compounds may offer a safer and often an effective alternative treatment for pain relief, especially for long-term use. Hence to find out natural anti-inflammatory compounds, we have highlighted five important butenolides that are eutypoid A, B, C, D and E with structure similar to that of rofecoxib, by ADMET and druglikeness analysis, followed by molecular docking with human COX-2 enzyme. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability of the ligands and that eutypoids C and E are the best candidates for the synthetic drugs with binding energy of -10.39 kcal/mol and -9.87 kcal/mol, respectively. The resulting complexes were then subject to 50 ns molecular dynamics (MD) simulation studies with the GROMACS package to analyze the stability of docked protein-ligand complexes and to assess the fluctuation and conformational changes during protein-ligand interaction. From the RMSD, RMSF, number of hydrogen bonds, SASA, PCA and MM/PBSA binding free energy analysis, we have found that out of five selected compounds eutypoid E showed good binding free energy of -174.45 kJ/mol, which is also good in other structural analyses. This compound displayed excellent pharmacological and structural properties to be drug candidates.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/química , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
15.
Chem Biodivers ; 19(1): e202100723, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34762766

RESUMO

Organic extract of the brown seaweed Turbinaria conoides (Sargassaceae) was chromatographically fractionated to yield an undescribed furanyl-substituted isochromanyl metabolite, named as turbinochromanone, which was characterized as methyl 4-[(3S)-8-{[(3R)-4-ethyl-2,3-dihydrofuran-3-yl]methyl}-1-oxo-3,4-dihydro-1H-2-benzopyran-3-yl]butanoate. The isochromanyl derivative possessed comparable attenuation potential against 5-lipoxygenase (IC50 3.70 µM) with standard 5-lipoxygenase inhibitor drug zileuton (IC50 2.41 µM). Noticeably, the index of anti-inflammatory selectivity of turbinochromanone (∼1.7) was considerably greater than that exhibited by the standard agent diclofenac (1.06). Antioxidant properties of turbinochromanone against oxidants (IC50 ∼24 µM) further supported its potential anti-inflammatory property. Greater electronic properties (topological polar surface area of 61.8) along with comparatively lesser docking parameters of the studied compound with aminoacyl residues of targeted enzymes (cyclooxygenase-2 and 5-lipoxygenase) (binding energy of -11.05 and -9.40 kcal mol-1 , respectively) recognized its prospective anti-inflammatory potential. In an aim to develop seaweed-based natural anti-inflammatory leads, the present study isolated turbinochromanone as promising 5-lipoxygenase and cyclooxygenase-2 inhibitor, which could be used for pharmaceutical and biotechnological applications.


Assuntos
Anti-Inflamatórios/química , Cromanos/química , Alga Marinha/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Antioxidantes/química , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/metabolismo , Sítios de Ligação , Cromanos/isolamento & purificação , Cromanos/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Furanos/química , Conformação Molecular , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Estrutura Terciária de Proteína , Alga Marinha/metabolismo , Termodinâmica
16.
J Biomol Struct Dyn ; 40(12): 5386-5408, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33427075

RESUMO

Cyclooxygenase 2 (COX-2) is a well-established target for the design of anti-inflammatory intermediates. Celecoxib was selected as a template molecule to perform ligand-based virtual screening, i.e. to search for structures with similarity in shape and electrostatic potential, with a gradual increase in accuracy through the combined fitting of several steps using eight commercial databases. The molecules ZINC408709 and ZINC2090319 reproduced values within the limits established in an initial study of absorption and distribution in the body. No alert was fired for possible toxic groups when these molecules were subjected to toxicity prediction. Molecular docking results with these compounds showed a higher binding affinity in comparison to rofecoxib for the COX-2 target. Additionally, ZINC408709 and ZINC2090319 were predicted to be potentially biologically active. In in silico prediction of endocrine disruption potential, it was established that the molecule ZINC2090319 binds strongly to the target related to cardiovascular risk in a desirable way as a non-steroidal antagonist and ZINC408709 binds strongly to the target that is associated with the treatment of inflammatory pathologies and similar to celecoxib. Metabolites generated from these compounds are less likely to have side effects. Simulations were used to evaluate the interaction of compounds with COX-1 and COX-2 during 200 ns. Despite the differences, ZINC408709 molecule showed better stability for COX-2 during molecular dynamics simulation. In the calculations of free energy MM/PBSA, the molecule ZINC408709 ΔGbind value has a higher affinity to celecoxib and rofecoxib COX-2. This demonstrates that the selected substances can be considered as promising COX-2 inhibitors. Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Simulação de Dinâmica Molecular , Celecoxib/farmacologia , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ligantes , Simulação de Acoplamento Molecular
17.
Appl Biochem Biotechnol ; 194(1): 54-70, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34843076

RESUMO

In recent years, inflammatory mediators have been considered a possible key for nonsteroidal anti-inflammatory drugs (NSAID's). NSAID's have been known as most promising medication against inflammation and its mediated pain. Inflammation could be recognize as a systemic adaptive stimulation triggered by detrimental stimuli as pathogenic attack and endogenous signals mediated injury inside the cells. In addition, there has been an inflammatory key mechanism involved in disease state. NSAIDs have been compromisingly recommended for targeting specific proteins and/or inflammatory-mediated enzymes including cyclooxygenases (COX). This subsequently inhibits the prostaglandins at the site of inflammation. For the past decades, two forms of the COX enzyme have been implicated as COX-1 expressed in cells and tissues and other COX-2 selectively triggered via proinflammatory cytokines at the site of inflammation and/or injury. In addition, NSAID's have also been implicated for the inhibition of NF-κB pathways, and other relevant proteins considered potent candidates for these drugs. NF-κB has been identified a classical proinflammatory signaling pathway. It has been recognized as a primary target for novel anti-inflammatory drugs. In our results, reports are being confirmed via the probable effects of NSAID's on inflammatory-mediated switches. Several studies were considered to enquire the possible interactions of NSAID's and inflammatory hub. Nevertheless, the exact mechanism is still debatable. In our study, NSAID's and their targeted proteins or molecules caused a convincing pattern. For improvised perception, the binding affinity of NSAID's with inflammatory-mediated proteins was quantified using a molecular docking tool. In addition, we have depicted the complex juncture of hydrogen bonding in targeted proteins with NSAID's. Our in silico investigations have revealed NSAID's as the powerful armor against COX-2- and NF-κB-mediated inflammation.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/química , Simulação de Acoplamento Molecular , NF-kappa B , Linhagem Celular , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , NF-kappa B/química
18.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929263

RESUMO

A series of 26 novel derivatives have been synthesized through structural modification of gentiopicroside, a lead COX-2 inhibitor. And their in vivo and in vitro anti-inflammatory activities have been investigated. The in vitro anti-inflammatory activities were evaluated against NO, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by LPS. Results showed that most compounds had good inhibitory activity. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Results demonstrated that several compounds were more active than the parent compound gentiopicroside. The inhibition rate of the most active compound P23 (57.26%) was higher than positive control drug celecoxib (46.05%) at dose 0.28 mmol·kg-1. Molecular docking suggested that these compounds might bind to COX-2 and iNOS. Some of them, e.g P7, P14, P16, P21, P23, and P24, had high docking scores in accordance with their potency of the anti-inflammatory activitiy, that downregulation of the inflammatory factors, NO, PGE2, and IL-6, was possibly associated with the suppression of iNOS and COX-2. Therefore, these gentiopicroside derivatives may represent a novel class of COX-2 and iNOS inhibitors.


Assuntos
Animais , Camundongos , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/química , Dinoprostona , Interleucina-6/metabolismo , Glucosídeos Iridoides , Simulação de Acoplamento Molecular , Piridinolcarbamato
19.
Bioorg Chem ; 117: 105466, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775204

RESUMO

Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.


Assuntos
Antineoplásicos/química , Antivirais/química , Aspirina/química , Curcumina/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , COVID-19/patologia , COVID-19/virologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681894

RESUMO

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Piridazinas/química , Pirróis/química , Triazóis/química , Anti-Inflamatórios/química , Sobrevivência Celular , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase/química , Derme/citologia , Derme/enzimologia , Desenho de Fármacos , Fibroblastos/citologia , Fibroblastos/enzimologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...