Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ontogenez ; 48(2): 122-33, 2017.
Artigo em Russo | MEDLINE | ID: mdl-30277361

RESUMO

The transformation of polyp into medusa is one of the most interesting processes in the life cycle of cnidarians. In the polyps of the class Scyphozoa this transformation occurs in the form of strobilation, which is the transverse fission of polyps with the formation of discoidal ephyrae. At present, the endogenous regulation of strobilation in one of scyphozoans, Aurelia aurita, is being investigated by the methods of molecular biology (Fuchs et al., 2014). However, it is still unclear which key environmental factors induce this process. The main purposes of this review are to summarize the literature data on the conditions in which strobilation in A. aurita occurs in nature and in the laboratory and to try to identify the environmental factors that are most likely to play a signaling role in strobilation.


Assuntos
Interação Gene-Ambiente , Estágios do Ciclo de Vida/fisiologia , Cifozoários/embriologia , Cifozoários/genética , Animais
2.
PLoS One ; 10(7): e0132544, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225420

RESUMO

In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so)/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B). In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B), during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.


Assuntos
Evolução Biológica , Evolução Molecular , Células Fotorreceptoras de Invertebrados/fisiologia , Cifozoários/genética , Órgãos dos Sentidos/embriologia , Animais , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Organogênese/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Filogenia , Proteínas Repressoras/genética , Cifozoários/embriologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Fatores de Transcrição/genética
3.
Proc Biol Sci ; 280(1757): 20130071, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446532

RESUMO

The Early Cambrian organism Olivooides is known from both embryonic and post-embryonic stages and, consequently, it has the potential to yield vital insights into developmental evolution at the time that animal body plans were established. However, this potential can only be realized if the phylogenetic relationships of Olivooides can be constrained. The affinities of Olivooides have proved controversial because of the lack of knowledge of the internal anatomy and the limited range of developmental stages known. Here, we describe rare embryonic specimens in which internal anatomical features are preserved. We also present a fuller sequence of fossilized developmental stages of Olivooides, including associated specimens that we interpret as budding ephyrae (juvenile medusae), all of which display a clear pentaradial symmetry. Within the framework of a cnidarian interpretation, the new data serve to pinpoint the phylogenetic position of Olivooides to the scyphozoan stem group. Hypotheses about scalidophoran or echinoderm affinities of Olivooides can be rejected.


Assuntos
Cifozoários/classificação , Animais , Cnidários/classificação , Equinodermos/classificação , Fósseis , Filogenia , Reprodução , Cifozoários/anatomia & histologia , Cifozoários/embriologia
4.
Ontogenez ; 43(5): 333-49, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23101407

RESUMO

Aurelia aurita is a cosmopolite species of scyphomedusae. Its major structural patterns and life cycle are well investigated. This work provides a detailed study on development and structure of the planula in A. aurita until it completes its metamorphosis. Lifetime observations and histological study performed during the settlement and metamorphosis of the planulae demonstrated that the inner manibrium linen of primary polyp (gastroderm) develops from the ectoderm of the planula posterior end. The spatial and temporal dynamics of serotonergic cells from the early embryonic stages until the formation of the primary polyp were studied for the first time. In addition, the distribution oftyrosinated tubulin and neuropeptide RFamide at different stages ofA. aurita development were studied.


Assuntos
Cifozoários/embriologia , Cifozoários/fisiologia , Animais , Ectoderma/embriologia , Ectoderma/crescimento & desenvolvimento , Embrião não Mamífero , Metamorfose Biológica , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Serotonina/metabolismo , Tubulina (Proteína)/metabolismo
5.
Dev Genes Evol ; 218(10): 511-24, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18850237

RESUMO

We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.


Assuntos
Padronização Corporal , Estágios do Ciclo de Vida/fisiologia , Sistema Nervoso/embriologia , Cifozoários/embriologia , Cifozoários/crescimento & desenvolvimento , Animais , Ectoderma/citologia , Ectoderma/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/ultraestrutura , Epitélio/ultraestrutura , FMRFamida/metabolismo , Larva/citologia , Larva/ultraestrutura , Metamorfose Biológica , Degeneração Neural , Sistema Nervoso/ultraestrutura , Neuritos/ultraestrutura , Cifozoários/citologia , Cifozoários/ultraestrutura , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/ultraestrutura , Taurina/metabolismo
6.
Dev Genes Evol ; 218(10): 525-39, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18850238

RESUMO

We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of "secondary" gastrulation during early metamorphosis.


Assuntos
Desenvolvimento Embrionário/fisiologia , Metamorfose Biológica/fisiologia , Cifozoários/embriologia , Animais , Blástula/citologia , Blástula/ultraestrutura , Proliferação de Células , Gastrulação , Larva/citologia , Larva/ultraestrutura , Modelos Biológicos , Cifozoários/citologia , Cifozoários/crescimento & desenvolvimento , Cifozoários/ultraestrutura , Estômago/embriologia
7.
Dev Biol ; 292(2): 371-80, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16487957

RESUMO

Cnidarians, in contrast with bilaterians, are generally considered to exhibit radial symmetry around a single body axis (oral-aboral) throughout their life-cycles. We have investigated how the oral-aboral axis is established in the hydrozoan jellyfish Podocoryne carnea. Vital labeling experiments showed that the oral end of the blastula derives from the animal pole region of the egg as has been demonstrated for other cnidarian species. Gastrulation is restricted to the oral pole such that the oral 20% of blastula cells give rise to endoderm. Unexpectedly, bisection experiments at the 8-cell stage showed that animal regions are able to develop into normally polarized larvae, but that vegetal (aboral) blastomeres completely fail to develop endoderm or to elongate. These vegetal-derived larvae also failed to polarize, as indicated by a lack of oral-specific RFamide-positive nerve cells and a disorganized tyrosinated tubulin-positive nerve net. A different result was obtained following bisection of the late blastula stage: aboral halves still lacked the capacity to develop endoderm but retained features of axial polarity including elongation of the larva and directional swimming. These results demonstrate for the first time in a cnidarian the presence of localized determinants responsible for axis determination and endoderm formation at the animal pole of the egg. They also show that axial polarity and endoderm formation are controlled by separable pathways after the blastula stage.


Assuntos
Padronização Corporal , Endoderma/citologia , Endoderma/fisiologia , Cifozoários/embriologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Embrião não Mamífero , Endoderma/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Modelos Biológicos
8.
Int J Dev Biol ; 49(8): 961-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16281173

RESUMO

Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.


Assuntos
Diferenciação Celular/fisiologia , Fator de Transcrição MSX1/fisiologia , Músculo Esquelético/embriologia , Cifozoários/embriologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Fator de Transcrição MSX1/genética , Dados de Sequência Molecular , Músculo Esquelético/citologia , Cifozoários/citologia , Cifozoários/genética
9.
Int J Dev Biol ; 49(8): 969-76, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16281174

RESUMO

In Aurelia aurita, applied iodine induces medusa formation (strobilation). This process also occurs when the temperature is lowered. This was found to increase oxidative stress resulting in an increased production of iodine from iodide. One polyp produces several medusae (initially termed ephyrae) starting at the polyp's oral end. The spreading of strobilation down the body column is controlled by a feedback loop: ephyra anlagen decrease the tyrosine content in adjacent polyp tissue by producing melanin from tyrosine. Endogenous tyrosine is able to remove iodine by forming iodiferous tyrosine compounds. The reduced level of tyrosine causes the ephyra-polyp-border to move towards the basal end of the former polyp. We argue that an oxidant defence system may exist which makes use of iodide and tyrosine. Like other marine invertebrates, polyps of Aurelia contain iodide ions. Inevitably produced peroxides oxidise iodide into iodine. The danger to be harmed by iodine is strongly decreased by endogenous tyrosine which reacts with iodine to form iodiferous tyrosine compounds including thyroxin. Both substances together, iodide and tyrosine, form an efficient oxidant defence system which shields the tissue against damage by reactive oxygen species. In the course of evolution (from a species at the basis of the animal kingdom like Aurelia to a highly evolved species like man) the waste product thyroxin (indicating a high metabolic rate) has developed into a hormone which controls the metabolic rate.


Assuntos
Padronização Corporal/genética , Iodo/metabolismo , Oxidantes/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Cifozoários/embriologia , Cifozoários/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Iodo/farmacologia , Compostos de Iodo/metabolismo , Melaninas/biossíntese , Oxidantes/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Temperatura , Tirosina/farmacologia
10.
Dev Dyn ; 230(3): 392-402, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15188425

RESUMO

Members of the CCAAT/enhancer binding protein (C/EBP) and the Maf protein subfamilies have been characterized in a variety of bilaterian organisms. This is the first report of C/EBP and MafL genes in a basal organism, the hydrozoan jellyfish Podocoryne carnea. Transcripts of both genes are present in all life cycle stages: egg, embryo, larva, polyp, and medusa. During early development, both factors appear to regulate metamorphosis of the larva to the primary polyp. Both genes are also expressed in the striated muscle of the developing and adult medusa. During in vitro transdifferentiation of striated muscle cells to smooth muscle and nerve cells, C/EBP is continuously expressed, whereas MafL expression is turned off during transdifferentiation and reactivated when nerve cells differentiate. Thus, both factors may be involved in muscle and nerve cell differentiation. In the mature medusa both genes are also implicated in gametogenesis. Developmental and evolutionary aspects of the gene structures and expression patterns are discussed.


Assuntos
Zíper de Leucina/genética , Músculo Esquelético/fisiologia , Regeneração , Cifozoários/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Clonagem Molecular , Evolução Molecular , Expressão Gênica , Hibridização In Situ , Estágios do Ciclo de Vida , Metamorfose Biológica , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Neurônios/citologia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cifozoários/embriologia , Cifozoários/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
11.
Dev Biol ; 269(2): 331-45, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15110704

RESUMO

The close functional link of nerve and muscle cells in neuromuscular units has led to the hypothesis of a common evolutionary origin of both cell types. Jellyfish are well suited to evaluate this theory since they represent the most basal extant organisms featuring both striated muscle and a nervous system. Here we describe the structure and expression of two novel genes for basic helix-loop-helix (bHLH) transcription factors, the Achaete-scute B family member Ash2 and the Atonal-like gene Atl1, in the hydrozoan jellyfish Podocoryne carnea. Ash2 is expressed exclusively in larval and adult endoderm cells and may be involved in differentiation of secretory cells. Atl1 expression is more widespread and includes the developing striated muscle as well as mechanosensory and nerve cell precursors in the medusa tentacles. Moreover, Atl1 expression is upregulated in proliferating nerve cell precursors arising from adult striated muscle cells by transdifferentiation in vitro. Likewise, the neuronal marker gene NP coding for the RFamide neuropeptide is expressed not only in mature nerve cells but also transiently in the developing muscle. The molecular evidence is concurrent to the hypothesis that muscle and nerve cells are closely linked in evolution and derive from a common myoepithelial precursor.


Assuntos
Sequências Hélice-Alça-Hélice , Cifozoários/embriologia , Fatores de Transcrição/análise , Sequência de Aminoácidos , Animais , Diferenciação Celular , Evolução Molecular , Dados de Sequência Molecular , Músculos/embriologia , Regeneração , Cifozoários/genética
12.
Zh Obshch Biol ; 63(4): 326-34, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12298180

RESUMO

The morphogenetic pathways based on the self-organization take an important part in the early development of White Sea Cnidarians--Dynamena pumila (Hydrozoa) and Aurelia aurita (Scyphozoa). Comparative analysis of their early development revealed two patterns of embryonic spatial structure reproduced in the morphogenesis of both species in spite of the differences of morphogenetic paths. These are toroidal and bilaterally symmetrical shapes. It is possible that these shapes correspond to the equilibrium states of developing system and their stable reproduction is a result of epigenetic rather than genetic program.


Assuntos
Hidrozoários/embriologia , Cifozoários/embriologia , Animais , Hidrozoários/crescimento & desenvolvimento , Hidrozoários/ultraestrutura , Microscopia Eletrônica de Varredura , Morfogênese , Oceanos e Mares , Cifozoários/crescimento & desenvolvimento , Cifozoários/ultraestrutura
13.
Dev Biol ; 244(2): 372-84, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11944944

RESUMO

One major difference between simple metazoans such as cnidarians and all the bilaterian animals is thought to involve the invention of mesoderm. The terms diploblasts and triploblasts are therefore, often used to group prebilaterian and bilaterian animals, respectively. However, jellyfish contain well developed striated and smooth muscle tissues that derive from the entocodon, a mesoderm-like tissue formed during medusa development. We investigated the hypothesis, that the entocodon could be homologous to the third germ layer of bilaterians by analyzing the structures and expression patterns of the homologues of Brachyury, Mef2, and Snail in the jellyfish Podocoryne carnea. These are regulatory genes from the T-box, MADS-box and zinc finger families known to play important roles in bilaterian mesoderm patterning and muscle differentiation. The sequence and expression data demonstrate that the genes are structurally and functionally conserved and even more similar to humans or other deuterostomes than to protostome model organisms such as Drosophila or Caenorhabditis elegans. Based on these data we conclude that the common ancestor of the cnidarians and bilaterians not only shared genes that play a role in regulating myogenesis but already used them to develop and differentiate muscle systems similar to those of triploblasts.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fetais , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/fisiologia , Cifozoários/embriologia , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Divisão Celular , Clonagem Molecular , Humanos , Hibridização In Situ , Fatores de Transcrição MEF2 , Morfogênese , Fatores de Regulação Miogênica , Especificidade de Órgãos , Filogenia , Cifozoários/classificação , Cifozoários/genética , Fatores de Transcrição da Família Snail
14.
Tsitologiia ; 44(11): 1109-14, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12561732

RESUMO

Protein composition of mesoglea of the scyphomedusa Aurelia aurita was revealed in SDS-PAGE. Some major bands are visible in mesoglea of a mature medusa: 30, 45-47, 85 kDa, three bands between 100-200 kDa, and several bands with molecular weights > 300 kDa. Polyclonal antisera RA45/47 against protein 45 kDa were raised. RA45/47 react with 45-47 kDa protein in mesogleal sample and protein 120 kDa in mesogleal cells on immunoblot. Immunohistochemical analysis of A. aurita histological sections of young and mature medusae showed antigen localization in mesogleal cell granules and in the apical part of ectodermal cells. In mature medusae, the antigen was localized also in elastic fibers. We can conclude that in A. aurita mesogleal cells, along with ectodermal cells, take part in the formation of extracellular matrix of mesoglea.


Assuntos
Proteínas/análise , Cifozoários/química , Animais , Antígenos de Protozoários/análise , Grânulos Citoplasmáticos/química , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Imuno-Histoquímica , Peso Molecular , Proteínas/química , Cifozoários/citologia , Cifozoários/embriologia
15.
Mech Dev ; 94(1-2): 157-69, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10842067

RESUMO

We characterized a Pax gene from the hydrozoan Podocoryne carnea. It is most similar to cnidarian Pax-B genes and encodes a paired domain, a homeodomain and an octapeptide. Expression analysis demonstrates the presence of Pax-B transcripts in eggs, the ectoderm of the planula larva and in a few scattered cells in the apical polyp ectoderm. In developing and mature medusae, Pax-B is localized in particular endodermal cells, oriented toward the outside. Pax-B is not expressed in muscle cells. However, if isolated striated muscle tissue is activated for transdifferentiation, the gene is expressed within 1 h, before new cell types, such as smooth muscle and nerve cells, have formed. The expression data indicate that Pax-B is involved in nerve cell differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Filogenia , Cifozoários/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Células Cultivadas , Clonagem Molecular , Sequência Conservada , Embrião não Mamífero , Endoderma/fisiologia , Feminino , Larva , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Óvulo/fisiologia , Fatores de Transcrição Box Pareados , Cifozoários/embriologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...