Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 100: 103308, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31622800

RESUMO

Rare diseases are often hard and long to be diagnosed precisely, and most of them lack approved treatment. For some complex rare diseases, precision medicine approach is further required to stratify patients into homogeneous subgroups based on the clinical, biological or molecular features. In such situation, deep phenotyping of these patients and comparing their profiles based on subjacent similarities are thus essential to help fast and precise diagnoses and better understanding of pathophysiological processes in order to develop therapeutic solutions. In this article, we developed a new pipeline of using deep phenotyping to define patient similarity and applied it to ciliopathies, a group of rare and severe diseases caused by ciliary dysfunction. As a French national reference center for rare and undiagnosed diseases, the Necker-Enfants Malades Hospital (Necker Children's Hospital) hosts the Imagine Institute, a research institute focusing on genetic diseases. The clinical data warehouse contains on one hand EHR data, and on the other hand, clinical research data. The similarity metrics were computed on both data sources, and were evaluated with two tasks: diagnoses with EHRs and subtyping with ciliopathy specific research data. We obtained a precision of 0.767 in the top 30 most similar patients with diagnosed ciliopathies. Subtyping ciliopathy patients with phenotypic similarity showed concordances with expert knowledge. Similarity metrics applied to rare disease offer new perspectives in a translational context that may help to recruit patients for research, reduce the length of the diagnostic journey, and better understand the mechanisms of the disease.


Assuntos
Ciliopatias/diagnóstico , Fenótipo , Doenças Raras/diagnóstico , Ciliopatias/classificação , Data Warehousing , Registros Eletrônicos de Saúde , Humanos , Doenças Raras/classificação
2.
Klin Monbl Augenheilkd ; 235(3): 273-280, 2018 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-29534264

RESUMO

The human Usher syndrome (USH) is a complex, rare disease manifesting in its most common form of inherited deaf-blindness. Due to the heterogeneous manifestation of the clinical symptoms, three clinical types (USH1-3) are distinguished according to the severity of the disease pattern. For a correct diagnosis, in addition to the auditory tests in early newborn screening, ophthalmological examinations and molecular genetic analysis are important. Ten known USH genes encode proteins, which are from heterogeneous protein families, interact in functional protein networks. In the eye and in the ear, USH proteins are expressed primarily in the mechano-sensitive hair cells and the rod and cone photoreceptor cells, respectively. In the hair cells, the USH protein networks are essential for the correct differentiation of the hair bundles as well as for the function of the mechano-electrical transduction complex in the matured cell. In the photoreceptor cells, USH proteins are located in the ciliary region and participate in intracellular transport processes. In addition, a USH protein network is present in the so-called calyceal processes. The lack of calyceal processes and the absence of a prominent visual phenotype in the mouse disqualifies mice as models for studies on the ophthalmic component of USH. While hearing impairments can be compensated with hearing aids and cochlear implants, there is no practical therapy for USH in the eye. Currently, gene-based therapy concepts, such as gene addition, applications of antisense oligonucleotides and TRIDs ("translational readthrough inducing drugs") for the readthrough of nonsense mutations are preclinically evaluated. For USH1B/MYO7A the UshStat gene therapy clinical trial is ongoing.


Assuntos
Ciliopatias/diagnóstico , Doenças Raras , Síndromes de Usher/diagnóstico , Animais , Ciliopatias/classificação , Ciliopatias/genética , Ciliopatias/terapia , Análise Mutacional de DNA , Surdocegueira/classificação , Surdocegueira/diagnóstico , Surdocegueira/genética , Surdocegueira/terapia , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Camundongos , Triagem Neonatal , Células Fotorreceptoras de Vertebrados/fisiologia , Gravidez , Síndromes de Usher/classificação , Síndromes de Usher/genética , Síndromes de Usher/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA