Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neurochem Int ; 179: 105807, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069079

RESUMO

Cinnamic alcohol (CA) is a phenylpropanoid found in the essential oil of the bark of the genus Cinnamomum spp. Schaeff. (Lauraceae Juss.), known as cinnamon. To evaluate the neuroprotective effect of CA and its possible mechanism of action on mice submitted to the pentylenetetrazole (PTZ) induced epileptic seizures model. Behavioral, neurochemical, histomorphometric and immunohistochemistry analysis were carried out. The administration of CA (50-200 mg/kg, i.p., 30 min prior to PTZ and 0.7-25 mg/kg, i.p., 60 min prior to PTZ) increased the latency to seizure onset and the latency to death. The effects observed with CA treatment at 60 min were partially reversed by pretreatment with flumazenil. Furthermore, neurochemical assays indicated that CA reduced the concentration of malondialdehyde and nitrite, while increasing the concentration of reduced glutathione. Finally, histomorphometric and immunohistochemistry analysis revealed a reduction in inflammation and an increase in neuronal preservation in the hippocampi of CA pre-treated mice. Taken together, the results suggest that CA seems to modulate the GABAA receptor, decrease oxidative stress, mitigate neuroinflammation, and reduce cell death processes.


Assuntos
Cinnamomum , Fármacos Neuroprotetores , Óleos Voláteis , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/isolamento & purificação , Camundongos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/isolamento & purificação , Masculino , Cinnamomum/química , Pentilenotetrazol , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Propanóis/farmacologia
2.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677749

RESUMO

Horchata, a herbal infusion drink from Ecuador containing a mixture of medicinal plants, has been reported to exhibit anti-inflammatory, analgesic, diuretic, and antioxidant activity. The antibacterial activity of each of the plants contained in the horchata mixture has not been fully evaluated. Thus, in this study, we analysed the antibacterial activity of 21 plants used in horchata, collected from the Ecuadorian Andes region, against bacterial strains of clinical importance. The methanolic extract of Cinnamomum sp. showed minimal inhibitory concentration (MIC) values of 250 µg/mL against Staphylococcus aureus ATCC25923 and Methicillin-resistant S. aureus (MRSA), while Pelargonium odoratissimum exhibited a MIC value of 500 µg/mL towards S. aureus ATCC25923. The high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS) analyses identified in Cinnamomum sp. epicatechin tannins, cinnamaldehyde, and prehelminthosporol molecules, whereas in P. odoratissimum, gallocatechin and epigallocatechin tannins, some flavonoids, and gallic acid and derivatives were identified. Finally, Cinnamomum sp. and P. odoratissimum showed partial inhibition of biofilm formation of S. aureus ATCC25923 and MRSA. Overall, our findings revealed which of the plants used in horchata are responsible for the antibacterial activity attributed to this herbal drink and exhibit the potential for Cinnamomum sp. and P. odoratissimum secondary metabolites to be explored as scaffolds in drug development.


Assuntos
Cinnamomum , Staphylococcus aureus Resistente à Meticilina , Pelargonium , Staphylococcus aureus , Cinnamomum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Taninos
3.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364159

RESUMO

Cinnamomum verum (Lauraceae), also known as "true cinnamon" or "Ceylon cinnamon" has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7-91.0%), benzyl benzoate (0.28-76.51%), (E)-cinnamyl acetate (0.36-32.1%), and (E)-cinnamaldehyde (1.0-19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.


Assuntos
Cinnamomum , Óleos Voláteis , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Filogenia , Cinnamomum/genética , Cinnamomum/química , Folhas de Planta/genética , Folhas de Planta/química , Código de Barras de DNA Taxonômico
4.
Vet Parasitol ; 290: 109341, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33472157

RESUMO

Dermanyssus gallinae(De Geer) (Acari: Dermanyssidae) is the main ectoparasite associated with laying poultry. This mite is commonly controlled by the application of synthetic chemical insecticides, wich lead to the selection of resistant populations and formation of residues in eggs. Thus, new molecules must be developed to control D. gallinae. This work evaluated the toxicity of essential oils (EOs) from Cinnamomum cassia, Cinnamomum camphora, Cinnamomum camphora var. linalooliferum, Citrus aurantium, Citrus aurantium var. bergamia, Citrus aurantifolia and Citrus reticulata var. tangerine against D. gallinae. Additionally, the chemical profiles of the most bioactive EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and the major compounds were subjected to new tests using D. gallinae. The most toxic EOs against D. gallinae were evaluated for the nontarget entomopathogenic fungus Beauveria bassiana (Unioeste 88). The EOs from C. cassia (LC50 = 25.43 ± 1.0423 µg/cm3) and C. camphora var. linalooliferum (LC50 = 39.84 ± 1.9635 µg/cm3) were the most active in the fumigant bioassay and caused mortality rates of 96 and 61%, respectively. The GC-MS analysis revealed that the major constituents of EOs from C. cassia and C. camphora var. linalooliferum were trans-cinnamaldehyde and linalool, respectively. The pure compounds, trans-cinnamaldehyde (LC50 = 68.89 ± 3.1391 µg/cm3) and linalool (LC50 = 51.45 ± 1.1967 µg/cm3), were tested on D. gallinae and showed lower toxicity than the EOs. Thus, the compounds were not the only active substances produced by C. cassia and C. camphora var. linalooliferum; moreover synergism may have occurred between the substances. The EOs from C. cassia and C. camphora var. linalooliferum were also toxic to B. bassiana (Unioeste 88). Thus, EOs from C. cassia and C. camphora var. linalooliferum are promising candidates for use in D. gallinae control, but cannot be used in conjunction with the fungus B. bassiana.


Assuntos
Ácaros e Carrapatos/efeitos dos fármacos , Cinnamomum/química , Citrus/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Fumigação , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos de Plantas/química
5.
Int J Biol Macromol ; 166: 902-912, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147435

RESUMO

Chemical modifications in the chitosan structure may result in obtaining a new material with improved chemical properties, such as an ability to encapsulate lipophilic compounds. This study aimed to synthesize cinnamic acid grafted chitosan nanogel to encapsulate the essential oils of Syzygium aromaticum and Cinnamomum ssp., in order to develop a material to be applied in the control of dermatophytosis caused by the fungus Microsporum canis. The cinnamic acid graft in chitosan was verified by the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Solid State Nuclear Magnetic Resonance of the 13C Nucleus (13C SSNMR) and Thermal analysis coupled to mass spectrometry (TG-MS) techniques. The nanogel obtained showed affinity for the essential oils of S. aromaticum and Cinnamomum, with encapsulation efficiencies equal to 74% and 89%, respectively. When in an aqueous medium the nanogel with the encapsulated essential oils was able to form stable nanoparticles with average sizes of 176.0 ± 54.3 nm and 263.0 ± 81.4 nm. The cinnamic acid grafted chitosan nanogel showed antifungal activity in vitro against M. canis, inhibiting up to 53.96% of its mycelial growth. Complete inhibition of mycelial growth was achieved by the nanogel with encapsulated essential oils. The results found in this work demonstrated the development of a material with potential application in the control of dermatophytosis caused by the fungus M. canis.


Assuntos
Antifúngicos/química , Quitosana/análogos & derivados , Cinamatos/química , Nanocápsulas/química , Nanogéis/química , Óleos Voláteis/química , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Cinnamomum/química , Microsporum/efeitos dos fármacos , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Syzygium/química
6.
Parasitology ; 147(3): 340-347, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840630

RESUMO

Essential oils (EOs) are considered a new class of ecological products aimed at the control of insects for industrial and domestic use; however, there still is a lack of studies involving the control of fleas. Ctenocephalides felis felis, the most observed parasite in dogs and cats, is associated with several diseases. The aim of this study was to evaluate the in vitro activity, the establishment of LC50 and toxicity of EOs from Alpinia zerumbet (Pers.) B. L. Burtt & R. M. Sm, Cinnamomum spp., Laurus nobilis L., Mentha spicata L., Ocimum gratissimum L. and Cymbopogon nardus (L.) Rendle against immature stages and adults of C. felis felis. Bioassay results suggest that the method of evaluation was able to perform a pre-screening of the activity of several EOs, including the discriminatory evaluation of flea stages by their LC50. Ocimum gratissimum EO was the most effective in the in vitro assays against all flea stages, presenting adulticide (LC50 = 5.85 µg cm-2), ovicidal (LC50 = 1.79 µg cm-2) and larvicidal (LC50 = 1.21 µg cm-2) mortality at low doses. It also presented an excellent profile in a toxicological eukaryotic model. These findings may support studies involving the development of non-toxic products for the control of fleas in dogs and cats.


Assuntos
Ctenocephalides , Controle de Insetos , Inseticidas , Óleos Voláteis , Alpinia/química , Animais , Cinnamomum/química , Ctenocephalides/crescimento & desenvolvimento , Cymbopogon/química , Técnicas In Vitro , Larva/crescimento & desenvolvimento , Laurus/química , Mentha spicata/química , Ocimum/química , Óvulo/crescimento & desenvolvimento
7.
Chem Biodivers ; 16(8): e1900204, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31298500

RESUMO

The purpose of this work was to determine the chemical composition and evaluate the antichemotactic, antioxidant, and antifungal activities of the essential oil obtained from the species Cryptocarya aschersoniana Mez, Cinnamomum amoenum (Ness & Mart.) Kosterm., and Schinus terebinthifolia Raddi, as well as the combination of C. aschersoniana essential oil and terbinafine against isolates of dermatophytes. Allo-aromadendrene, bicyclogermacrene, and germacrene B were identified as major compounds in essential oils. The essential oil of C. aschersoniana shown 100 % inhibitory effect on leukocyte migration at the concentration of 10 µg/mL while S. terebinthifolia oil presented 80.1 % inhibitory effect at the same concentration. Only S. terebinthifolia oil possessed free-radical-scavenging activity which indicates its antioxidant capacity. The essential oils were also tested against fungal isolates of dermatophyte species (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum), resulting in MIC ranging from 125 µg/mL to over 500 µg/mL. C. aschersoniana oil combined with terbinafine resulted in an additive interaction effect. In this case, the essential oil may act as a complement to conventional therapy for the topical treatment of superficial fungal infections, mainly because it is associated with an anti-inflammatory effect.


Assuntos
Anacardiaceae/química , Antifúngicos/química , Cinnamomum/química , Cryptocarya/química , Óleos Voláteis/química , Anacardiaceae/metabolismo , Antifúngicos/farmacologia , Antioxidantes/química , Candida/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cinnamomum/metabolismo , Cryptocarya/metabolismo , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Trichophyton/efeitos dos fármacos
9.
Mol Phylogenet Evol ; 96: 33-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26718058

RESUMO

Tropical and subtropical amphi-Pacific disjunction is among the most fascinating distribution patterns, but received little attention. Here we use the fossil-rich Cinnamomum group, a primarily tropical and subtropical Asian lineage with some species distributed in Neotropics, Australasia and Africa to shed light upon this disjunction pattern. Phylogenetic and biogeographic analyses were carried out using sequences of three nuclear loci from 94 Cinnamomum group and 13 outgroup samples. Results show that although there are three clades within a monophyletic Cinnamomum group, Cinnamomum and previously recognized subdivisions within this genus were all rejected as natural groups. The Cinnamomum group appears to have originated in the widespread boreotropical paleoflora of Laurasia during the early Eocene (ca. 55Ma). The formation and breakup of the boreotropics seems to have then played a key role in the formation of intercontinental disjunctions within the Cinnamomum group. The first cooling interval (50-48Ma) in the late early Eocene resulted in a floristic discontinuity between Eurasia and North America causing the tropical and subtropical amphi-Pacific disjunction. The second cooling interval in the mid-Eocene (42-38Ma) resulted in the fragmentation of the boreotropics within Eurasia, leading to an African-Asian disjunction. Multiple dispersal events from North into South America occurred from the early Eocene to late Miocene and a single migration event from Asia into Australia appears to have occurred in the early Miocene.


Assuntos
Cânfora , Cinnamomum/química , Cinnamomum/genética , Filogenia , África , Ásia , Australásia , Cinnamomum/classificação , Europa (Continente) , Evolução Molecular , Fósseis , América do Norte , Filogeografia , América do Sul
10.
Braz. J. Microbiol. ; 45(4): 1409-1413, Oct.-Dec. 2014. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-27948

RESUMO

The antibacterial effect of α-terpineol from Cinnamomum longepaniculatum (Gamble) N. Chao leaf essential oils were studied with special reference to the mechanism of inhibiting the standard strain of Escherichia coli (CMCC (B) 44102) growth at ultrastructural level. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) and time-kill curves of α-terpineol were determined; Escherichia coli was treated with α-terpineol and observed under a transmission electron microscope. The MIC and MBC values of α-terpineol were all 0.78 µL/mL, and time-kill curves showed the concentration-dependent. Under the transmission electron microscopy (TEM), Escherichia coli exposed to MIC levels of α-terpineol exhibited decreased cell size and irregular cell shape, cell wall and cell membrane were ruptured, nucleus cytoplasm was reduced and nuclear area gathered aside. Results suggest that α-terpineol has excellent antibacterial activity and could induce morphological changes of Escherichia coli.


Assuntos
Antibacterianos/farmacologia , Cicloexenos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Monoterpenos/farmacologia , Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Parede Celular/ultraestrutura , Cinnamomum/química , Cicloexenos/isolamento & purificação , Citoplasma/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Viabilidade Microbiana/efeitos dos fármacos
11.
Braz. j. microbiol ; Braz. j. microbiol;45(4): 1409-1413, Oct.-Dec. 2014. ilus, graf
Artigo em Inglês | LILACS | ID: lil-741294

RESUMO

The antibacterial effect of α-terpineol from Cinnamomum longepaniculatum (Gamble) N. Chao leaf essential oils were studied with special reference to the mechanism of inhibiting the standard strain of Escherichia coli (CMCC (B) 44102) growth at ultrastructural level. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) and time-kill curves of α-terpineol were determined; Escherichia coli was treated with α-terpineol and observed under a transmission electron microscope. The MIC and MBC values of α-terpineol were all 0.78 µL/mL, and time-kill curves showed the concentration-dependent. Under the transmission electron microscopy (TEM), Escherichia coli exposed to MIC levels of α-terpineol exhibited decreased cell size and irregular cell shape, cell wall and cell membrane were ruptured, nucleus cytoplasm was reduced and nuclear area gathered aside. Results suggest that α-terpineol has excellent antibacterial activity and could induce morphological changes of Escherichia coli.


Assuntos
Antibacterianos/farmacologia , Cicloexenos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Monoterpenos/farmacologia , Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Parede Celular/ultraestrutura , Cinnamomum/química , Cicloexenos/isolamento & purificação , Citoplasma/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Viabilidade Microbiana/efeitos dos fármacos , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química
12.
Braz J Microbiol ; 45(4): 1409-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763048

RESUMO

The antibacterial effect of α-terpineol from Cinnamomum longepaniculatum (Gamble) N. Chao leaf essential oils were studied with special reference to the mechanism of inhibiting the standard strain of Escherichia coli (CMCC (B) 44102) growth at ultrastructural level. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) and time-kill curves of α-terpineol were determined; Escherichia coli was treated with α-terpineol and observed under a transmission electron microscope. The MIC and MBC values of α-terpineol were all 0.78 µL/mL, and time-kill curves showed the concentration-dependent. Under the transmission electron microscopy (TEM), Escherichia coli exposed to MIC levels of α-terpineol exhibited decreased cell size and irregular cell shape, cell wall and cell membrane were ruptured, nucleus cytoplasm was reduced and nuclear area gathered aside. Results suggest that α-terpineol has excellent antibacterial activity and could induce morphological changes of Escherichia coli.


Assuntos
Antibacterianos/farmacologia , Cicloexenos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Monoterpenos/farmacologia , Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Parede Celular/ultraestrutura , Cinnamomum/química , Monoterpenos Cicloexânicos , Cicloexenos/isolamento & purificação , Citoplasma/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química
13.
J Sci Food Agric ; 91(13): 2399-406, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21604280

RESUMO

BACKGROUND: The replacement of some synthetic food antioxidants by safe natural antioxidants has fostered research on the screening of raw materials to find new vegetable sources of antioxidants. In this study the antioxidant activity of eight wild-growing Colombian plants was assessed by four complementary assays. RESULTS: An evaluation of the antioxidant activity of ten ethanolic extracts from Baccharis chilco, Cinnamomum triplinerve, Ilex laurina, Lachemilla orbiculata, Lepechinia conferta, Quercus humboldtii, Rubus urticifolius and Tephrosia cinerea was carried out. Furthermore, the total phenolic content was determined by the Folin-Ciocalteu method, and the relationship between phenolic content and activity was also statistically investigated. Cinnamomum triplinerve, L. conferta and I. laurina were found to have the highest phenolic contents. Baccharis chilco, C. triplinerve, I. laurina, L. conferta, Q. humboldtii and R. urticifolius showed higher radical-scavenging activity (DPPH and superoxide assays) than commercial rosemary oleoresin (reference). Lachemilla orbiculata and R. urticifolius showed higher antioxidant activity (ß-carotene-bleaching test) than the reference. The protection factor of all studied plant extracts was below that of the reference according to the Rancimat test. CONCLUSION: On the basis of the results obtained, C. triplinerve, Q. humboldtii and R. urticifolius seem to be the most promising species for further investigation in order to identify the compounds responsible for their activity.


Assuntos
Antioxidantes/análise , Descoberta de Drogas , Sequestradores de Radicais Livres/análise , Extratos Vegetais/química , Algoritmos , Antioxidantes/química , Cinnamomum/química , Colômbia , Etanol/química , Conservantes de Alimentos/análise , Conservantes de Alimentos/química , Sequestradores de Radicais Livres/química , Frutas/química , Frutas/crescimento & desenvolvimento , Fenóis/análise , Fenóis/química , Quercus/química , Reprodutibilidade dos Testes , Rosaceae/química , Solventes/química , Meio Selvagem , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA