Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 28(10): 858-868, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625746

RESUMO

Phosphatase and tensin homolog (PTEN) is a phosphatidylinositol-3,4,5-triphosphate (PIP3) phospholipid phosphatase that is commonly mutated or silenced in cancer. PTEN's catalytic activity, cellular membrane localization and stability are orchestrated by a cluster of C-terminal phosphorylation (phospho-C-tail) events on Ser380, Thr382, Thr383 and Ser385, but the molecular details of this multi-faceted regulation have remained uncertain. Here we use a combination of protein semisynthesis, biochemical analysis, NMR, X-ray crystallography and computational simulations on human PTEN and its sea squirt homolog, VSP, to obtain a detailed picture of how the phospho-C-tail forms a belt around the C2 and phosphatase domains of PTEN. We also visualize a previously proposed dynamic N-terminal α-helix and show that it is key for PTEN catalysis but disordered upon phospho-C-tail interaction. This structural model provides a comprehensive framework for how C-tail phosphorylation can impact PTEN's cellular functions.


Assuntos
PTEN Fosfo-Hidrolase/química , Animais , Ciona intestinalis/química , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação
2.
Chembiochem ; 22(12): 2140-2145, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33871133

RESUMO

3-Hydroxyisoquinolines (ISOs) and their tautomeric isoquinolin-3-ones are heterocycles with attractive biological properties. Here we reported the revisited synthesis of a highly functionalized ISO that showed blue fluorescence and the characterization of its biological properties in an invertebrate animal model, the ascidian Ciona intestinalis. Larvae exposed to ISO at concentrations higher than 1 µM showed an intense fluorescence localized in the cell nuclei of all tissues. Moreover, exposure to ISO interfered with larval ability to swim; this neuromuscular effect was reversible. Overall, these results suggested that ISOs can have promising applications as novel fluorescent dyes of the cell nuclei.


Assuntos
Cordados não Vertebrados/química , Ciona intestinalis/química , Fluorescência , Isoquinolinas/farmacocinética , Animais , Cordados não Vertebrados/metabolismo , Ciona intestinalis/metabolismo , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Distribuição Tecidual
3.
Biochemistry ; 58(45): 4505-4518, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647219

RESUMO

The ßγ-crystallin superfamily contains both ß- and γ-crystallins of the vertebrate eye lens and the microbial calcium-binding proteins, all of which are characterized by a common double-Greek key domain structure. The vertebrate ßγ-crystallins are long-lived structural proteins that refract light onto the retina. In contrast, the microbial ßγ-crystallins bind calcium ions. The ßγ-crystallin from the tunicate Ciona intestinalis (Ci-ßγ) provides a potential link between these two functions. It binds calcium with high affinity and is found in a light-sensitive sensory organ that is highly enriched in metal ions. Thus, Ci-ßγ is valuable for investigating the evolution of the ßγ-crystallin fold away from calcium binding and toward stability in the apo form as part of the vertebrate lens. Here, we investigate the effect of Ca2+ and other divalent cations on the stability and aggregation propensity of Ci-ßγ and human γS-crystallin (HγS). Beyond Ca2+, Ci-ßγ is capable of coordinating Mg2+, Sr2+, Co2+, Mn2+, Ni2+, and Zn2+, although only Sr2+ is bound with comparable affinity to its preferred metal ion. The extent to which the tested divalent cations stabilize Ci-ßγ structure correlates strongly with ionic radius. In contrast, none of the tested divalent cations improved the stability of HγS, and some of them induced aggregation. Zn2+, Ni2+, and Co2+ induce aggregation by interacting with cysteine residues, whereas Cu2+-mediated aggregation proceeds via a different binding site.


Assuntos
Cálcio/metabolismo , Ciona intestinalis/metabolismo , beta-Cristalinas/metabolismo , gama-Cristalinas/metabolismo , Animais , Cátions Bivalentes/metabolismo , Ciona intestinalis/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Estabilidade Proteica , beta-Cristalinas/química , gama-Cristalinas/química
4.
Proc Natl Acad Sci U S A ; 116(16): 7847-7856, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936317

RESUMO

Neuropeptides play pivotal roles in various biological events in the nervous, neuroendocrine, and endocrine systems, and are correlated with both physiological functions and unique behavioral traits of animals. Elucidation of functional interaction between neuropeptides and receptors is a crucial step for the verification of their biological roles and evolutionary processes. However, most receptors for novel peptides remain to be identified. Here, we show the identification of multiple G protein-coupled receptors (GPCRs) for species-specific neuropeptides of the vertebrate sister group, Ciona intestinalis Type A, by combining machine learning and experimental validation. We developed an original peptide descriptor-incorporated support vector machine and used it to predict 22 neuropeptide-GPCR pairs. Of note, signaling assays of the predicted pairs identified 1 homologous and 11 Ciona-specific neuropeptide-GPCR pairs for a 41% hit rate: the respective GPCRs for Ci-GALP, Ci-NTLP-2, Ci-LF-1, Ci-LF-2, Ci-LF-5, Ci-LF-6, Ci-LF-7, Ci-LF-8, Ci-YFV-1, and Ci-YFV-3. Interestingly, molecular phylogenetic tree analysis revealed that these receptors, excluding the Ci-GALP receptor, were evolutionarily unrelated to any other known peptide GPCRs, confirming that these GPCRs constitute unprecedented neuropeptide receptor clusters. Altogether, these results verified the neuropeptide-GPCR pairs in the protochordate and evolutionary lineages of neuropeptide GPCRs, and pave the way for investigating the endogenous roles of novel neuropeptides in the closest relatives of vertebrates and the evolutionary processes of neuropeptidergic systems throughout chordates. In addition, the present study also indicates the versatility of the machine-learning-assisted strategy for the identification of novel peptide-receptor pairs in various organisms.


Assuntos
Ciona intestinalis , Neuropeptídeos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Animais , Ciona intestinalis/química , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Biologia Computacional , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Máquina de Vetores de Suporte
5.
Biochem Biophys Res Commun ; 510(1): 91-96, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30661790

RESUMO

Adhesive ascidians have caused serious biofouling problems and huge economic losses in marine ecosystems. However, adhesion mechanisms, particularly on functional proteins involved in ascidian adhesion, remain largely unexplored. Here, we identified 26 representative stolon proteins from the highly invasive fouling ascidian Ciona robusta using the proteomics approach. The uncharacterized stolon proteins were rich in adhesion-related conserved domains. Real-time quantitative PCR further revealed specific expressions of these uncharacterized protein genes in stolon tissue, suggesting their potential roles in stolon adhesion.> A recombinant vWFA domain-containing uncharacterized protein, ascidian stolon protein 1 (ASP-1), was successfully expressed in a baculovirus-insect cell system and purified in vitro. Coating experiment showed that tyrosinase-modified ASP-1 could absorb to glass and organic glass stronger than unmodified ASP-1, while only modified ASP-1 could absorb to aluminum foil. Quartz crystal microbalance analysis also showed the increase in absorption ability of ASP-1 after modification. In addition, abundant 3,4-l-dihydroxyphenylalanine (DOPA) in modified protein was detected by nitroblue tetrazolium staining. These results suggest that ASP-1 be involved in ascidian DOPA-dependent and material-selective adhesion. Overall, this study provides insight into molecular mechanisms of C. robusta stolon adhesion, and findings here are expected to be conductive to develop strategies against biofouling caused by ascidians.


Assuntos
Incrustação Biológica , Adesão Celular , Ciona intestinalis/química , Espécies Introduzidas , Proteínas/análise , Adesivos/química , Adsorção , Animais , Monofenol Mono-Oxigenase/metabolismo , Proteômica/métodos , Urocordados/química
6.
Elife ; 72018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30484774

RESUMO

Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named 'the hydrophobic spine'), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.


Assuntos
Citoplasma/genética , Ativação do Canal Iônico/genética , Membranas/química , Monoéster Fosfórico Hidrolases/química , Sequência de Aminoácidos/genética , Animais , Domínio Catalítico/genética , Ciona intestinalis/química , Citoplasma/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Monoéster Fosfórico Hidrolases/genética , Domínios Proteicos
7.
Proc Natl Acad Sci U S A ; 115(37): 9240-9245, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30127012

RESUMO

The voltage-gated proton (Hv1) channel, a voltage sensor and a conductive pore contained in one structural module, plays important roles in many physiological processes. Voltage sensor movements can be directly detected by measuring gating currents, and a detailed characterization of Hv1 charge displacements during channel activation can help to understand the function of this channel. We succeeded in detecting gating currents in the monomeric form of the Ciona-Hv1 channel. To decrease proton currents and better separate gating currents from ion currents, we used the low-conducting Hv1 mutant N264R. Isolated ON-gating currents decayed at increasing rates with increasing membrane depolarization, and the amount of gating charges displaced saturates at high voltages. These are two hallmarks of currents arising from the movement of charged elements within the boundaries of the cell membrane. The kinetic analysis of gating currents revealed a complex time course of the ON-gating current characterized by two peaks and a marked Cole-Moore effect. Both features argue that the voltage sensor undergoes several voltage-dependent conformational changes during activation. However, most of the charge is displaced in a single central transition. Upon voltage sensor activation, the charge is trapped, and only a fast component that carries a small percentage of the total charge is observed in the OFF. We hypothesize that trapping is due to the presence of the arginine side chain in position 264, which acts as a blocking ion. We conclude that the movement of the voltage sensor must proceed through at least five states to account for our experimental data satisfactorily.


Assuntos
Ciona intestinalis/química , Ciona intestinalis/metabolismo , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Substituição de Aminoácidos , Animais , Ciona intestinalis/genética , Canais Iônicos/genética , Transporte de Íons/fisiologia , Cinética , Mutação de Sentido Incorreto , Xenopus laevis
8.
Sci Rep ; 8(1): 2014, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386625

RESUMO

Sperm chemotaxis toward a chemoattractant is very important for the success of fertilization. Calaxin, a member of the neuronal calcium sensor protein family, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis of ascidian, Ciona intestinalis. Here, we present the crystal structures of calaxin both in the open and closed states upon Ca2+ and Mg2+ binding. The crystal structures revealed that three of the four EF-hands of a calaxin molecule bound Ca2+ ions and that EF2 and EF3 played a critical role in the conformational transition between the open and closed states. The rotation of α7 and α8 helices induces a significant conformational change of a part of the α10 helix into the loop. The structural differences between the Ca2+- and Mg2+-bound forms indicates that EF3 in the closed state has a lower affinity for Mg2+, suggesting that calaxin tends to adopt the open state in Mg2+-bound form. SAXS data supports that Ca2+-binding causes the structural transition toward the closed state. The changes in the structural transition of the C-terminal domain may be required to bind outer-arm dynein. These results provide a novel mechanism for recognizing a target protein using a calcium sensor protein.


Assuntos
Proteínas Sensoras de Cálcio Intracelular/química , Simulação de Dinâmica Molecular , Animais , Sítios de Ligação , Cálcio/metabolismo , Ciona intestinalis/química , Flagelos/química , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Magnésio/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica
10.
Protein Sci ; 25(2): 410-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26473758

RESUMO

Most members of the p53 family of transcription factors form tetramers. Responsible for determining the oligomeric state is a short oligomerization domain consisting of one ß-strand and one α-helix. With the exception of human p53 all other family members investigated so far contain a second α-helix as part of their tetramerization domain. Here we have used nuclear magnetic resonance spectroscopy to characterize the oligomerization domains of the two p53-like proteins from the tunicate Ciona intestinalis, representing the closest living relative of vertebrates. Structure determination reveals for one of the two proteins a new type of packing of this second α-helix on the core domain that was not predicted based on the sequence, while the other protein does not form a second helix despite the presence of crucial residues that are conserved in all other family members that form a second helix. By mutational analysis, we identify a proline as well as large hydrophobic residues in the hinge region between both helices as the crucial determinant for the formation of a second helix.


Assuntos
Ciona intestinalis/química , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Proteína Supressora de Tumor p53/química , Proteínas Supressoras de Tumor/química , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteína Tumoral p73
11.
PLoS One ; 10(11): e0141585, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587834

RESUMO

FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.


Assuntos
Potenciais de Ação , Proteínas de Fluorescência Verde/química , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Ciona intestinalis/química , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Monoéster Fosfórico Hidrolases/química
12.
Lipids ; 50(10): 1009-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26233815

RESUMO

In order to establish Ciona intestinalis as a new bioresource for n-3 fatty acids-rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC-FID, GC-MS, (1)H NMR, 2D NMR, MALDI-TOF-MS and LC-ESI-MS methods. It was found that the tunic and inner body tissues contained 3.42-4.08% and 15.9-23.4% of lipids respectively. PL was the dominant lipid class (42-60%) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n-9, C20:1n-9, C20:5n-3 (EPA) and C22:6n-3 (DHA). The highest amounts of long chain n-3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 (Z)-dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis. Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n-3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL.


Assuntos
Ciona intestinalis/química , Ácidos Graxos Ômega-3/análise , Fosfolipídeos/análise , Animais , Ciona intestinalis/anatomia & histologia , Glicolipídeos/análise , Espectroscopia de Prótons por Ressonância Magnética/métodos
13.
Carbohydr Polym ; 117: 286-296, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498637

RESUMO

Cellulose nanocrystals (CNs) were prepared from tunicate by enzymatic hydrolysis (ECN), TEMPO-mediated oxidation (TCN) and acid hydrolysis (ACN). They were cast alone or blended with glucomannan (GM) from konjac or spruce to prepare films. Different CNs were obtained with a yield of ECN>TCN>ACN with corresponding order of decreased Mw but increased crystallinity. The CNs' diameters were on the nanometre scale, with lengths of ECN>TCN>ACN. For CN-films, TCN and ACN fibrils were stretched and parallel to each other due to surface charges. For CN-GM films, both components interacted strongly with each other, resulting in changes of crystallinity, specific surface area, fibril diameter and contact angle compared with CN films. The composite films had good thermal, optical and mechanical properties; the last ones are apparently better than similar films reported in the literature. This is the first systematic study of different tunicate CN-GM nanocomposite films and the first ever for spruce GM.


Assuntos
Celulose/química , Mananas/química , Nanocompostos/química , Nanopartículas/química , Animais , Celulose/análogos & derivados , Ciona intestinalis/química
14.
Aquat Toxicol ; 152: 47-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727215

RESUMO

The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.


Assuntos
Aminoaciltransferases/genética , Cádmio/toxicidade , Ciona intestinalis/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Animais , Cádmio/análise , Ciona intestinalis/química , Ciona intestinalis/classificação , Ciona intestinalis/enzimologia , Ciona intestinalis/genética , Perfilação da Expressão Gênica , Ordem dos Genes , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Poluentes Químicos da Água/análise
15.
Nat Struct Mol Biol ; 21(3): 244-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487958

RESUMO

The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.


Assuntos
Ciona intestinalis/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Eletrofisiologia , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Xenopus laevis/metabolismo
16.
Mar Biotechnol (NY) ; 15(5): 520-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23592257

RESUMO

Chromatin immunoprecipitation (ChIP) assays allow the efficient characterization of the in vivo occupancy of genomic regions by DNA-binding proteins and thus facilitate the prediction of cis-regulatory sequences in silico and guide their validation in vivo. For these reasons, these assays and their permutations (e.g., ChIP-on-chip and ChIP-sequencing) are currently being extended to several non-mainstream model organisms, as the availability of specific antibodies increases. Here, we describe the development of a polyclonal antibody against the Brachyury protein of the marine invertebrate chordate Ciona intestinalis and provide a detailed ChIP protocol that should be easily adaptable to other marine organisms.


Assuntos
Imunoprecipitação da Cromatina/métodos , Ciona intestinalis/química , Proteínas de Ligação a DNA/análise , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Anticorpos/genética , Primers do DNA/genética , DNA Complementar/genética , Imuno-Histoquímica , Imunoprecipitação , Biologia Marinha/métodos
17.
Proteomics ; 13(5): 860-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23300126

RESUMO

Ciona intestinalis (the common sea squirt) is the closest living chordate relative to vertebrates with cosmopolitan presence worldwide. It has a relatively simple nervous system and development, making it a widely studied alternative model system in neuroscience and developmental biology. The use of Ciona as a model organism has increased significantly after the draft genome was published. In this study, we describe the first proteome map of the neural complex of C. intestinalis. A total of 544 proteins were identified based on 1DE and 2DE FTMS/ITMSMS analyses. Proteins were annotated against the Ciona database and analyzed to predict their molecular functions, roles in biological processes, and position in constructed network pathways. The identified Ciona neural complex proteome was found to map onto vertebrate nervous system pathways, including cytoskeleton remodeling neurofilaments, cell adhesion through the histamine receptor signaling pathway, γ-aminobutyric acid-A receptor life cycle neurophysiological process, glycolysis, and amino acid metabolism. The proteome map of the Ciona neural complex is the first step toward a better understanding of several important processes, including the evolution and regeneration capacity of the Ciona nervous system.


Assuntos
Ciona intestinalis/química , Proteínas do Tecido Nervoso/análise , Proteoma/análise , Animais , Cromatografia Líquida , Ciona intestinalis/metabolismo , Eletroforese em Gel Bidimensional , Ensaios de Triagem em Larga Escala , Proteínas do Tecido Nervoso/química , Sistema Nervoso/química , Sistema Nervoso/metabolismo , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
18.
Nat Struct Mol Biol ; 19(6): 633-41, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22562138

RESUMO

The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) couples a voltage-sensing domain (VSD) to a lipid phosphatase that is similar to the tumor suppressor PTEN. How the VSD controls enzyme function has been unclear. Here, we present high-resolution crystal structures of the Ci-VSP enzymatic domain that reveal conformational changes in a crucial loop, termed the 'gating loop', that controls access to the active site by a mechanism in which residue Glu411 directly competes with substrate. Structure-based mutations that restrict gating loop conformation impair catalytic function and demonstrate that Glu411 also contributes to substrate selectivity. Structure-guided mutations further define an interaction between the gating loop and linker that connects the phosphatase to the VSD for voltage control of enzyme activity. Together, the data suggest that functional coupling between the gating loop and the linker forms the heart of the regulatory mechanism that controls voltage-dependent enzyme activation.


Assuntos
Ciona intestinalis/enzimologia , Ácido Glutâmico/química , PTEN Fosfo-Hidrolase/química , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Ciona intestinalis/química , Ciona intestinalis/genética , Cristalografia por Raios X , Ativação Enzimática , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Conformação Proteica , Estrutura Terciária de Proteína
19.
J Endocrinol ; 213(1): 99-106, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22289502

RESUMO

Cholecystokinin (CCK) and gastrin are vertebrate brain-gut peptides featured by a sulfated tyrosine residue and a C-terminally amidated tetrapeptide consensus sequence. Cionin, identified in the ascidian, Ciona intestinalis, the closest species to vertebrates, harbors two sulfated tyrosines and the CCK/gastrin consensus tetrapeptide sequence. While a putative cionin receptor, cior, was cloned, the ligand-receptor relationship between cionin and CioR remains unidentified. Here, we identify two cionin receptors, CioR1 and CioR2, which are the aforementioned putative cionin receptor and its novel paralog respectively. Phylogenetic analysis revealed that CioRs are homologous to vertebrate CCK receptors (CCKRs) and diverged from a common ancestor in the Ciona-specific lineage. Cionin activates intracellular calcium mobilization in cultured cells expressing CioR1 or CioR2. Monosulfated and nonsulfated cionin exhibited less potent or no activity, indicating that CioRs possess pharmacological features similar to the vertebrate CCK-specific receptor CCK1R, rather than its subtype CCK2R, given that a sulfated tyrosine in CCK is required for binding to CCK1R, but not to CCK2R. Collectively, the present data reveal that CioRs share a common ancestor with vertebrate CCKRs and indicate that CCK and CCK1R form the ancestral ligand-receptor pair in the vertebrate CCK/gastrin system. Cionin is expressed in the neural complex, digestive organs, oral siphon and atrial siphons, whereas the expression of ciors was detected mainly in these tissues and the ovary. Furthermore, cioninergic neurons innervate both of the siphons. These results suggest that cionin is involved in the regulation of siphonal functions.


Assuntos
Colecistocinina/fisiologia , Ciona intestinalis/fisiologia , Evolução Molecular , Gastrinas/fisiologia , Neuropeptídeos/fisiologia , Receptores da Colecistocinina/fisiologia , Sequência de Aminoácidos , Animais , Colecistocinina/química , Ciona intestinalis/química , Sequência Consenso , Gastrinas/química , Dados de Sequência Molecular , Neuropeptídeos/química , Oligopeptídeos/química , Oligopeptídeos/fisiologia , Filogenia , Receptores da Colecistocinina/química , Tirosina/química
20.
Methods ; 56(1): 18-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22245513

RESUMO

Determining the complete primary structure of large proteins is difficult because of the large sequence size and low sequence homology among animals, as is the case with connectin (titin)-like proteins in invertebrate muscles. Conventionally, large proteins have been investigated using immuno-screenings and plaque hybridization screenings that require significant time and labor. Recently, however, the genomic sequences of various invertebrates have been determined, leading to changes in the strategies used to elucidate the complete primary structures of large proteins. In this paper, we describe our methods for determining the sequences of large proteins by elucidating the primary structure of connectin from the ascidian Ciona intestinalis as an example. We searched for genes that encode connectin-like proteins in the C. intestinalis genome using the BLAST search program. Subsequently, we identified some domains present in connectin and connectin-like proteins, such as immunoglobulin (Ig), fibronectin type 3 (Fn) and kinase domains in C. intestinalis using the SMART program and manual estimation. The existence of these domains and the unique sequences between each domain were confirmed using RT-PCR. We also examined the localization of mRNA using whole-mount in situ hybridization (WISH) and protein expression using SDS-PAGE. These analyses indicate that the domain structure and molecular weight of ascidian connectin are similar to those of vertebrate connectin and that ascidian connectin is also expressed in heart muscle, similarly to vertebrate connectin. The methods described in this study can be used to determine the primary structures of large proteins, such as novel connectin-like proteins in invertebrates.


Assuntos
Ciona intestinalis/química , Genômica , Proteínas Musculares/química , Proteínas Quinases/química , Animais , Ciona intestinalis/genética , Conectina , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Proteínas Musculares/genética , Filogenia , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...