Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.497
Filtrar
1.
Arch Virol ; 169(5): 115, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709425

RESUMO

Porcine circoviruses (PCVs) are a significant cause of concern for swine health, with four genotypes currently recognized. Two of these, PCV3 and PCV4, have been detected in pigs across all age groups, in both healthy and diseased animals. These viruses have been associated with various clinical manifestations, including porcine dermatitis and nephropathy syndrome (PDNS) and respiratory and enteric signs. In this study, we detected PCV3 and PCV4 in central China between January 2022 and February 2023. We tested fecal swabs and tissue samples from growing-finishing and suckling pigs with or without respiratory and systemic manifestations and found the prevalence of PCV3 to be 15.15% (15/99) and that of PCV3/PCV4 coinfection to be 4.04% (4/99). This relatively low prevalence might be attributed to the fact that most of the clinical samples were collected from pigs exhibiting respiratory signs, with only a few samples having been obtained from pigs with diarrhea. In some cases, PCV2 was also detected, and the coinfection rates of PCV2/3, PCV2/4, and PCV2/3/4 were 6.06% (6/99), 5.05% (5/99), and 3.03% (3/99), respectively. The complete genomic sequences of four PCV3 and two PCV4 isolates were determined. All four of the PCV3 isolates were of subtype PCV3b, and the two PCV4 isolates were of subtype PCV4b. Two mutations (A24V and R27K) were found in antibody recognition domains of PCV3, suggesting that they might be associated with immune escape. This study provides valuable insights into the molecular epidemiology and evolution of PCV3 and PCV4 that will be useful in future investigations of genotyping, immunogenicity, and immune evasion strategies.


Assuntos
Infecções por Circoviridae , Circovirus , Genótipo , Filogenia , Doenças dos Suínos , Circovirus/genética , Circovirus/isolamento & purificação , Circovirus/classificação , Animais , Suínos , China/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Infecções por Circoviridae/epidemiologia , Coinfecção/virologia , Coinfecção/veterinária , Coinfecção/epidemiologia , Genoma Viral/genética , Fezes/virologia
2.
Arch Virol ; 169(6): 119, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753197

RESUMO

Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.


Assuntos
Infecções por Circoviridae , Circovirus , Reação em Cadeia da Polimerase Multiplex , Doenças dos Suínos , Circovirus/genética , Circovirus/isolamento & purificação , Circovirus/classificação , Suínos , Animais , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Infecções por Circoviridae/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Primers do DNA/genética , DNA Viral/genética
3.
Sci Rep ; 14(1): 10263, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704425

RESUMO

We report the first detection and prevalence of Beak and feather disease virus (BFDV) in Australia's Red Goshawk (Erythrotriorchis radiatus). This is a new host for this pervasive pathogen amongst a growing list of non-psittacine species including birds of prey from the orders Accipitriformes (hawks, eagles, kites), Falconiformes (falcons and caracas), and Strigiformes (owls). The Red Goshawk is the first non-psittacine species listed as Endangered to be diagnosed with BFDV. We report an initial case of infection discovered post-mortem in a dead nestling and subsequent surveillance of birds from across northern Australia. We reveal BFDV prevalence rates in a wild raptor population for the first time, with detections in 25% (n = 7/28) of Red Goshawks sampled. Prevalence appears higher in juveniles compared to adults, although not statistically significant, but is consistent with studies of wild psittacines. BFDV genotypes were associated with the Loriinae (lorikeets, budgerigar, and fig parrots), Cacatuini (Cockatoos), and Polytelini (long-tailed parrots) tribes; species which are preyed upon by Red Goshawks. A positive BFDV status may be associated with lower body mass but small sample sizes precluded robust statistical analysis. We postulate the possible impacts of the virus on Red Goshawks and discuss future research priorities given these preliminary observations.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Espécies em Perigo de Extinção , Animais , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/isolamento & purificação , Falcões/virologia , Austrália/epidemiologia , Filogenia , Prevalência , Genótipo
4.
J Vet Sci ; 25(2): e28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568829

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) infection is ubiquitous around the world. Diagnosis of the porcine circovirus-associated disease requires clinic-pathological elements together with the quantification of viral loads. Furthermore, given pig farms in regions lacking access to sufficient laboratory equipment, developing diagnostic devices with high accuracy, accessibility, and affordability is a necessity. OBJECTIVES: This study aims to investigate two newly developed diagnostic tools that may satisfy these criteria. METHODS: We collected 250 specimens, including 170 PCV2-positive and 80 PCV2-negative samples. The standard diagnosis and cycle threshold (Ct) values were determined by quantitative polymerase chain reaction (qPCR). Then, two point-of-care (POC) diagnostic platforms, convective polymerase chain reaction (cPCR, qualitative assay: positive or negative results are shown) and EZtargex (quantitative assay: Ct values are shown), were examined and analyzed. RESULTS: The sensitivity and specificity of cPCR were 88.23% and 100%, respectively; the sensitivity and specificity of EZtargex were 87.65% and 100%, respectively. These assays also showed excellent concordance compared with the qPCR assay (κ = 0.828 for cPCR and κ = 0.820 for EZtargex). The statistical analysis showed a great diagnostic power of the EZtargex assay to discriminate between samples with different levels of positivity. CONCLUSIONS: The two point-of-care diagnostic platforms are accurate, rapid, convenient and require little training for PCV2 diagnosis. These POC platforms can discriminate viral loads to predict the clinical status of the animals. The current study provided evidence that these diagnostics were applicable with high sensitivity and specificity in the diagnosis of PCV2 infection in the field.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Circovirus/genética , Doenças dos Suínos/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/veterinária , Reação em Cadeia da Polimerase/veterinária
5.
BMC Genomics ; 25(1): 369, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622517

RESUMO

BACKGROUND: Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS: PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS: In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Animais , Columbidae , Filogenia , Fazendas , Circovirus/genética , Infecções por Circoviridae/veterinária , Nucleotídeos
6.
Vet Microbiol ; 293: 110088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640639

RESUMO

Orf virus (ORFV), a member of the genus Parapoxvirus, possesses an excellent immune activation capability, which makes it a promising immunomodulation agent. In this study, we evaluated ORFV as a novel adjuvant to enhance the immune response of mice to a subunit vaccine using porcine circovirus type 2 (PCV2) capsid (Cap) protein as a model. Our results showed that both inactivated and live attenuated ORFV activated mouse bone marrow-derived dendritic cells and increased expression of immune-related cytokines interleukin (IL)-1ß, IL-6, and TNF-α. Enhanced humoral and cellular immune responses were induced in mice immunized with PCV2 Cap protein combined with inactivated or live attenuated ORFV adjuvant compared with the aluminum adjuvant. Increased secretion of Th1 and Th2 cytokines by splenic lymphocytes in immunized mice further indicated that the ORFV adjuvant promoted a mixed Th1/Th2 immune response. Moreover, addition of the ORFV adjuvant to the PCV2 subunit vaccine significantly reduced the viral load in the spleen and lungs of PCV2-challenged mice and prevented pathological changes in lungs. This study demonstrates that ORFV enhances the immunogenicity of a PCV2 subunit vaccine by improving the adaptive immune response, suggesting the potential application of ORFV as a novel adjuvant.


Assuntos
Adjuvantes Imunológicos , Infecções por Circoviridae , Circovirus , Citocinas , Vírus do Orf , Vacinas de Subunidades Antigênicas , Vacinas Virais , Animais , Circovirus/imunologia , Camundongos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Adjuvantes Imunológicos/administração & dosagem , Citocinas/imunologia , Vírus do Orf/imunologia , Proteínas do Capsídeo/imunologia , Feminino , Imunidade Celular , Células Dendríticas/imunologia , Carga Viral , Anticorpos Antivirais/sangue , Imunidade Humoral , Suínos , Adjuvantes de Vacinas , Camundongos Endogâmicos BALB C , Células Th1/imunologia
7.
Arch Virol ; 169(5): 91, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578455

RESUMO

Psittacine beak and feather disease virus (PBFDV) and budgerigar fledgling disease virus (BFDV) are significant avian pathogens that threaten both captive and wild birds, particularly parrots, which are common hosts. This study involved sampling and testing of 516 captive birds from households, pet shops, and an animal clinic in Hong Kong for PBFDV and BFDV. The results showed that PBFDV and BFDV were present in 7.17% and 0.58% of the samples, respectively. These rates were lower than those reported in most parts of Asia. Notably, the infection rates of PBFDV in pet shops were significantly higher compared to other sources, while no BFDV-positive samples were found in pet shops. Most of the positive samples came from parrots, but PBFDV was also detected in two non-parrot species, including Swinhoe's white-eyes (Zosterops simplex), which had not been reported previously. The ability of PBFDV to infect both psittacine and passerine birds is concerning, especially in densely populated urban areas such as Hong Kong, where captive flocks come into close contact with wildlife. Phylogenetic analysis of the Cap and Rep genes of PBFDV revealed that the strains found in Hong Kong were closely related to those in Europe and other parts of Asia, including mainland China, Thailand, Taiwan, and Saudi Arabia. These findings indicate the presence of both viruses among captive birds in Hong Kong. We recommend implementing regular surveillance for both viruses and adopting measures to prevent contact between captive and wild birds, thereby reducing the transmission of introduced diseases to native species.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Melopsittacus , Papagaios , Infecções por Polyomavirus , Polyomavirus , Animais , Circovirus/genética , Hong Kong/epidemiologia , Prevalência , Filogenia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Polyomavirus/genética , Animais Selvagens , Genótipo , Doenças das Aves/epidemiologia , Fatores de Risco
8.
Front Immunol ; 15: 1339387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571947

RESUMO

Background: Porcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China. Methods: In this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice. Results: rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators. Conclusion: rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine.


Assuntos
Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Suínos , Animais , Camundongos , Herpesvirus Suídeo 1/genética , Pseudorraiva/prevenção & controle , Interleucina-4/genética , Circovirus/genética , Vacinas Sintéticas
9.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675986

RESUMO

Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial cells (PIECs) infected with PCV2, can inhibit the maturation of monocyte-derived dendritic cells (MoDCs). Here, we established a co-culture system of MoDCs and different groups of PIECs to further investigate the PCV2-induced endothelial IL-8 signaling pathway that drives the inhibition of MoDC maturation. The differentially expressed genes related to MoDC maturation were mainly enriched in the NF-κB and JAK2-STAT3 signaling pathways. Both the NF-κB related factor RELA and JAK2-STAT3 signaling pathway related factors (IL2RA, JAK, STAT2, STAT5, IL23A, IL7, etc.) decreased significantly in the IL-8 up-regulated group, and increased significantly in the down-regulated group. The expression of NF-κB p65 in the IL-8 up-regulated group was reduced significantly, and the expression of IκBα was increased significantly. Nuclear translocation of NF-κB p65 was inhibited, while the nuclear translocation of p-STAT3 was increased in MoDCs in the PCV2-induced endothelial IL-8 group. The results of treatment with NF-κB signaling pathway inhibitors showed that the maturation of MoDCs was inhibited and the expression of IL-12 and GM-CSF at mRNA level were lower. Inhibition of the JAK2-STAT3 signaling pathway had no significant effect on maturation, and the expression of IL-12 and GM-CSF at mRNA level produced no significant change. In summary, the NF-κB signaling pathway is the main signaling pathway of MoDC maturation, and is inhibited by the PCV2-induced up-regulation of endothelial-derived IL-8.


Assuntos
Circovirus , Interleucina-8 , Transdução de Sinais , Doenças dos Suínos , Animais , Diferenciação Celular , Células Cultivadas , Infecções por Circoviridae/virologia , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Circovirus/imunologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , NF-kappa B/metabolismo , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo
10.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
11.
Virologie (Montrouge) ; 28(1): 9-21, 2024 02 01.
Artigo em Francês | MEDLINE | ID: mdl-38450664

RESUMO

Coinfections affecting the porcine respiratory system have often been overlooked, in favor of mono-infections, even though they are significantly more common in the field. In pigs, the term 'porcine respiratory complex' is used to describe coinfections involving both viruses, such as, for example, the swine influenza type A virus (swIAV), the porcine respiratory and reproductive syndrome virus (PRRSV), and the porcine circovirus type 2 (PCV-2), as well as bacteria. Until recently, most studies were primarily focused on clinical aspects and paid little attention to the molecular consequences of coinfections. This narrative review addresses the consequences of coinfections in the porcine respiratory system involving viruses. When possible, interactions that can occur between viruses are briefly presented. Conversely, research involving bacteria, protozoa, and fungi has not been considered at all. Finally, the main limitations complicating the interpretation of results from coinfection/superinfection studies are considered, and prospects in this exciting field of health research are presented.


Assuntos
Circovirus , Coinfecção , Vírus da Influenza A , Viroses , Suínos , Animais , Viroses/veterinária , Sistema Respiratório
12.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506716

RESUMO

PCV2 belongs to the genus Circovirus in the family Circoviridae, whose genome is replicated by rolling circle replication (RCR). PCV2 Rep is a multifunctional enzyme that performs essential functions at multiple stages of viral replication. Rep is responsible for nicking and ligating single-stranded DNA and unwinding double-stranded DNA (dsDNA). However, the structure and function of the Rep are still poorly understood, which significantly impedes viral replication research. This study successfully resolved the structure of the PCV2 Rep ATPase domain (PRAD) using X-ray crystallography. Homologous structure search revealed that Rep belonged to the superfamily 3 (SF3) helicase, and multiple conserved residues were identified during sequence alignment with SF3 family members. Simultaneously, a hexameric PRAD model was generated for analysing characteristic structures and sites. Mutation of the conserved site and measurement of its activity showed that the hallmark motifs of the SF3 family influenced helicase activity by affecting ATPase activity and ß-hairpin just caused the loss of helicase activity. The structural and functional analyses of the PRAD provide valuable insights for future research on PCV2 replication and antiviral strategies.


Assuntos
Circovirus , Suínos , Animais , Circovirus/genética , Adenosina Trifosfatases/genética , Cristalografia por Raios X , DNA Helicases/genética , Replicação do DNA
13.
Vet Microbiol ; 292: 110060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520754

RESUMO

This study compared the different sequential order of infection of porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae. Thirty-six pigs were allocated randomly across six different groups. Pigs underwent various inoculation sequences: M. hyopneumoniae administered 14 days before PCV2d, simultaneous PCV2d-M. hyopneumoniae, PCV2d given 14 days before M. hyopneumoniae, PCV2d only, M. hyopneumoniae only, or a mock inoculum. Overall, the pigs inoculated with M. hyopneumoniae 14 days prior to PCV2d (Mhyo-PCV2 group) and those inoculated simultaneously with PCV2d and M. hyopneumoniae (PCV2+Mhyo group) displayed notably higher clinical disease severity and experienced a significant decrease of their average daily weight gain than pigs inoculated with PCV2d 14 days prior to M. hyopneumoniae (PCV2-Mhyo group). M. hyopneumoniae infection potentiated PCV2 blood and lymph node viral loads, as well as PCV2-associated lesions, while the infection of PCV2d did not impact the intensity of M. hyopneumoniae infection. Tumor necrosis factor-α (TNF-α) sera levels were significantly increased in the Mhyo-PCV2 and PCV2+Mhyo groups as compared to the PCV2-Mhyo, PCV2, and Mhyo groups. The most important information was that the potentiation effect of M. hyopneumoniae on PCV2d was found only in pigs inoculated with either M. hyopneumoniae followed by PCV2d (Mhyo-PCV2 group) or a simultaneous inoculation of PCV2d and M. hyopneumoniae (PCV2+Mhyo group). The sequential infection order of PCV2d and M. hyopneumoniae resulted in divergent clinical outcomes.


Assuntos
Infecções por Circoviridae , Circovirus , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Doenças dos Suínos , Suínos , Animais , Pneumonia Suína Micoplasmática/patologia , Pulmão/patologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/patologia
14.
Vaccine ; 42(11): 2848-2857, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38514351

RESUMO

Porcine circovirus type 2 (PCV2) is an important pathogen harmful to global pig production, which causes immunosuppression and serious economic losses. PCV2 capsid (Cap) protein expressed by E. coli or baculovirus-insect cells are often used in preparation of PCV2 subunit vaccines, but the latter is expensive to produce. It is therefore crucial to comparison of the immune effects of Cap protein expressed by the above two expression systems for reducing the production cost and guaranteeing PCV2 vaccine quality. In this study, the PCV2d-Cap protein lacking nuclear localization signal (NLS), designated as E. coli-Cap and Bac-Cap, was expressed by E. coli and baculovirus-Spodoptera frugiperda Sf9 (Bac-Sf9) cells, respectively. The expressed Cap proteins could self-assemble into virus-like particles (VLPs), but the Bac-Cap-assembled VLPs were more regular. The two system-expressed Cap proteins induced similar specific IgG responses in mice, but the neutralizing antibody levels of Bac-Cap-immunized mice was higher than those of E. coli-Cap. After PCV2 challenge, IL-10 in Bac-Cap immunized mice decreased significantly than that in E. coli-Cap. The lesions and PCV2 antigen positive cells in tissues of mice immunized with E. coli-Cap and Bac-Cap were significantly reduced, and Bac-Cap appeared mild lesions and fewer PCV2 antigen-positive cells compared with E. coli-Cap immunized mice. The study indicated that Cap proteins expressed by E. coli and Bac-Sf9 cells could induce specific protective immunity, but the latter induced more effective immunity, which provides valuable information for the research and development of PCV2 vaccine.


Assuntos
Infecções por Circoviridae , Circovirus , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Suínos , Camundongos , Proteínas do Capsídeo/genética , Anticorpos Antivirais , Circovirus/genética , Escherichia coli/metabolismo , Baculoviridae/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária
15.
Xenotransplantation ; 31(2): e12842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501706

RESUMO

BACKGROUND: As sequencing is becoming more broadly available, virus discovery continues. Small DNA viruses contribute to up to 60% of the overall virus load in pigs. Porcine circoviruses (PCVs) are small DNA viruses with a single-stranded circular genome. They are common in pig breeds and have not been properly addressed for their potential risk in xenotransplantation. Whereas PCV1 is non-pathogenic in pigs, PCV2 has been associated with various disease manifestations. Recently two new circoviruses have been described, PCV3 and PCV4. While PCV4 is currently present mainly in Asia, PCV3 is widely distributed, and has been identified in commercial pigs, wild boars, and pigs generated for xenotransplantation. In one case PCV3 was transmitted by pigs to baboons via heart transplantation. PCV3 pathogenicity in pigs was controversial initially, however, the virus was found to be associated with porcine dermatitis and nephropathy syndrome (PDNS), reproductive failure, and multisystemic inflammation. Inoculation studies with PCV3 infectious clones confirmed that PCV3 is pathogenic. Most importantly, recently discovered human circoviruses (CV) are closely related to PCV3. METHODS: Literature was evaluated and summarized. A dendrogram of existing circoviruses in pigs, humans, and other animal species was created and assessed at the species level. RESULTS: We found that human circoviruses can be divided into three species, human CV1, CV2, and CV3. Human CV2 and CV3 are closest to PCV3. CONCLUSIONS: Circoviruses are ubiquitous. This communication should create awareness of PCV3 and the newly discovered human circoviruses, which may be a problem for blood transfusions and xenotransplantation in immune suppressed individuals.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Humanos , Animais , Transplante Heterólogo , Transfusão de Sangue , Filogenia
16.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473709

RESUMO

Porcine circovirus 4 (PCV4) is a newly identified virus belonging to PCV of the Circoviridae family, the Circovirus genus. We previously found that PCV4 is pathogenic in vitro, while the virus's replication in cells is still unknown. In this study, we evaluated the N-terminal of the PCV4 capsid (Cap) and identified an NLS at amino acid residues 4-37 of the N-terminus of the PCV4 Cap, 4RSRYSRRRRNRRNQRRRGLWPRASRRRYRWRRKN37. The NLS was further divided into two fragments (NLS-A and NLS-B) based on the predicted structure, including two α-helixes, which were located at 4RSRYSRRRRNRRNQRR19 and 24PRASRRRYRWRRK36, respectively. Further studies showed that the NLS, especially the first α-helixes formed by the NLS-A fragment, determined the nuclear localization of the Cap protein, and the amino acid 4RSRY7 in the NLS of the PCV4 Cap was the critical motif affecting the VLP packaging. These results will provide a theoretical basis for elucidating the infection mechanism of PCV4 and developing subunit vaccines based on VLPs.


Assuntos
Circovirus , Sinais de Localização Nuclear , Animais , Suínos , Sinais de Localização Nuclear/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Aminoácidos/metabolismo
17.
Arch Virol ; 169(3): 67, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451379

RESUMO

Porcine circovirus type 4 (PCV4), first identified in 2019 as a newly emerging pathogen, has been found in several provinces of China, as well as in Korea and Thailand. Since PCV4 is not included in immunization programs, epidemiological investigations should be conducted for detection of anti-PCV4 antibodies. Virus-like particles (VLPs) are frequently used for serological analysis of pathogen infections. However, there have been no reports on using PCV4 VLPs for serological investigation of PCV4 infection. In this study, we generated self-assembled PCV4 VLPs using an E. coli expression system, purified them using a two-step process, and used them to develop an indirect ELISA. This ELISA method was found to be highly specific, sensitive, and repeatable, making it suitable for PCV4 antibody detection in serum samples. Finally, the ELISA was used to analyze 422 serum samples collected from across several regions in China, 134 of which tested positive. Thus, the PCV4-VLP-based ELISA can effectively detect antibodies against PCV4 in serum samples, making it a useful tool for PCV4 epidemiology.


Assuntos
Circovirus , Animais , Suínos , Circovirus/genética , Escherichia coli , Anticorpos , Ensaio de Imunoadsorção Enzimática , China
19.
PLoS Pathog ; 20(2): e1012014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394330

RESUMO

The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Circovirus/genética , Circovirus/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Nucleofosmina , Sumoilação , Infecções por Circoviridae/genética , Infecções por Circoviridae/metabolismo , Replicação Viral/fisiologia , DNA Viral/genética , DNA Viral/metabolismo
20.
Vet J ; 304: 106081, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38360136

RESUMO

Investigating infectious agents in porcine abortion material and stillborn piglets poses challenges for practitioners and diagnostic laboratories. In this study, pooled samples of individual reference organs (thymus and heart) from a total of 1000 aborted fetuses and stillborn piglets were investigated using quantitative PCR protocols for porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) and porcine circovirus type 2 (PCV2). Simultaneously, a pluck-pool containing equivalent portions of fetal thymus, heart, and lung tissue was collected, frozen at - 20 °C, and re-analyzed when a certain amount of either PRRSV-1 RNA or PCV2 DNA was detected in individual reference organs. Thirteen pluck-pools were assessed for PRRSV-1, all being PCR-positive. For PCV2, 11 of 15 pluck-pools investigated were PCR-positive. In all pluck-pools testing negative, viral loads in individual pools were low. This study indicates that pluck-pools can be valuable diagnostic material and the consolidation of multiple organs through a single RNA/DNA extraction optimizes the utilization of available laboratory resources. Additional research is required to assess the feasibility of follow-up investigations and to accurately define criteria for interpretation of viral loads in a clinical context.


Assuntos
Infecções por Circoviridae , Circovirus , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Gravidez , Feminino , Suínos , Animais , Doenças dos Suínos/diagnóstico , Circovirus/genética , Natimorto/veterinária , Anticorpos Antivirais , DNA , RNA , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...