Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.499
Filtrar
1.
Exp Physiol ; 109(5): 791-803, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460127

RESUMO

The mechanisms behind renal vasodilatation elicited by stimulation of ß-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during ß-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV7.1 channels was examined in a wire-myograph. The ß-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV7 and BKCa channels affected the ß-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV7 channels significantly decreased the ß-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the ß-adrenergic vasorelaxation. The ß-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV7.1 channels. As opposed to rats, inhibition of KV7 channels did not affect the murine ß-adrenergic vasorelaxation. Although inhibition and activation of KV7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected ß-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV7 and BKCa channels significantly reduced the ß-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.


Assuntos
Rim , Vasodilatação , Animais , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Masculino , Ratos , Camundongos , Rim/metabolismo , Rim/irrigação sanguínea , Canal de Potássio KCNQ1/metabolismo , Isoproterenol/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Camundongos Endogâmicos C57BL , Ratos Wistar , Hipertensão/fisiopatologia , Hipertensão/metabolismo
2.
Ren Fail ; 44(1): 1207-1215, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35856162

RESUMO

PURPOSE: Terlipressin improves renal function in patients with septic shock. However, the mechanism remains unclear. Here, we aimed to evaluate the effects of terlipressin on renal perfusion in patients with septic shock. MATERIALS AND METHODS: This pilot study enrolled patients with septic shock in the intensive care unit of the tertiary hospital from September 2019 to May 2020. We randomly assigned patients to terlipressin and usual care groups using a 1:1 ratio. Terlipressin was intravenously pumped at a rate of 1.3 µg/kg/hour for 24 h. We monitored renal perfusion using renal contrast-enhanced ultrasound (CEUS). The primary outcome was peak sonographic signal intensity (a renal perfusion parameter monitored by CEUS) at 24 h after enrollment. RESULTS: 22 patients were enrolled in this study with 10 in the terlipressin group and 12 in the usual care group. The baseline characteristics of patients between the two groups were comparable. The peak sonographic signal intensity at 24 h after enrollment in the terlipressin group (60.5 ± 8.6 dB) was significantly higher than that in the usual care group (52.4 ± 7.0 dB; mean difference, 7.1 dB; 95% CI, 0.4-13.9; adjusted p = .04). Patients in the terlipressin group had a lower time to peak, heart rates, norepinephrine dose, and a higher stroke volume at 24 h after enrollment. No significant difference in the urine output within 24 h and incidence of acute kidney injury within 28 days was found between the two groups. CONCLUSIONS: Terlipressin improves renal perfusion, increases stroke volume, and decreases norepinephrine dose and heart rates in patients with septic shock.


Assuntos
Norepinefrina , Circulação Renal , Choque Séptico , Terlipressina , Humanos , Norepinefrina/uso terapêutico , Projetos Piloto , Circulação Renal/efeitos dos fármacos , Choque Séptico/tratamento farmacológico , Terlipressina/uso terapêutico , Resultado do Tratamento
3.
Am J Physiol Renal Physiol ; 322(2): F197-F207, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001664

RESUMO

KV7 channels, the voltage-gated K+ channels encoded by KCNQ genes, mediate heterogeneous vascular responses in rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter mean arterial pressure, renal blood flow, and renal vascular resistance in the pigs. An ∼20 mmHg reduction in mean arterial pressure evoked effective autoregulation of renal blood flow, which HMR inhibited. We conclude that 1) the expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.NEW & NOTEWORTHY KV7.1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. KV7.1 is functionally expressed in neonatal pig renal vascular smooth muscle cells (SMCs). A decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs. Although SMC KV7.1 does not control basal renal vascular resistance, its inhibition blunts neonatal renal autoregulation engendered by a step decrease in arterial pressure.


Assuntos
Pressão Arterial/efeitos dos fármacos , Cromanos/farmacologia , Canal de Potássio KCNQ1/antagonistas & inibidores , Rim/irrigação sanguínea , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Circulação Renal/efeitos dos fármacos , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Homeostase , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Sus scrofa
4.
Sci Rep ; 11(1): 23277, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857853

RESUMO

The aim of this study was to evaluate renal hemodynamics, routine clinical and laboratory parameters used to estimate renal function, and clinical evolution during six months in bitches with mammary carcinomas that underwent mastectomy and were treated (TG) or not (CG) with carprofen for three months after surgery. Twenty-six bitches with mammary carcinoma were equally distributed into TG that received carprofen 4.4 mg/kg/day for 90 days and CG that did not receive anti-inflammatory medication. Renal artery Doppler flowmetry, contrast-enhanced ultrasound (CEUS) of renal parenchyma, haematological, biochemical and clinical analyses were obtained once a month. These data were compared between groups and time via analysis of variance (ANOVA) in a completely randomized design with repeated measures (P < 0.05). On B-mode ultrasound, the area of the renal artery was greater (P = 0.0003) in the TG. Regarding laboratory findings, haematocrit and haemoglobin were similar in both groups, showing a significant and gradual increase after three months of treatment; MCV, MHC, and MCHC were increased (P < 0.05) and lymphocyte and band counts decreased (P < 0.05) in the TG. Regarding biochemical tests, ALT was the only parameter with a significant difference, being higher (P = 0.0272) in the treated group. It can be concluded that the use of carprofen for 90 days causes minimal changes in renal perfusion, erythrocyte parameters and ALT activity, and reduces the proportion of blood inflammatory cells. Therefore, use of this medication can be carried out safely in patients who require auxiliary cancer treatment.


Assuntos
Carbazóis/administração & dosagem , Carbazóis/efeitos adversos , Carcinoma/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Neoplasias Mamárias Animais/tratamento farmacológico , Circulação Renal/efeitos dos fármacos , Ultrassonografia Doppler , Animais , Carcinoma/fisiopatologia , Carcinoma/cirurgia , Doenças do Cão/fisiopatologia , Doenças do Cão/cirurgia , Cães , Feminino , Glândulas Mamárias Animais/cirurgia , Neoplasias Mamárias Animais/fisiopatologia , Neoplasias Mamárias Animais/cirurgia , Fatores de Tempo
5.
Eur J Pharmacol ; 913: 174637, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801528

RESUMO

Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), alternatively known as calmodulin-dependent protein kinase III, inhibits protein translation via phosphorylating its sole substrate, eEF2. We previously demonstrated that expression and activity of eEF2K change in mesenteric artery from spontaneously hypertensive rats (SHR) with aging and that eEF2K is involved in pathogenesis of essential hypertension. In addition, we have recently revealed that acute intravenous injection with A484954, a selective eEF2K inhibitor, lowers blood pressure specifically in SHR partly via inducing vasorelaxation. In this study, we examined whether A484954 induces diuretic effect. After male SHR and normotensive Wistar Kyoto rats (WKY) were given a single intraperitoneal injection of A484954 (2.5 mg/kg, 0.5-9 h), urine was collected using metabolic cage. Contraction of isolated renal arteries form SHR was isometrically measured. While A484954 did not induce diuretic effect in WKY, it increased urine output, water intake, and urinary sodium excretion in SHR. A484954 (10 µM) induced vasorelaxation in isolated renal arteries, which was inhibited by a ß-adrenergic receptor antagonist, propranolol. It was confirmed that A484954 increased renal blood flow in SHR as measured by renal ultrasonography. In summary, it was for the first time revealed that A484954 induces diuretic effect in SHR at least partly via renal vasorelaxation through ß-adrenergic receptor.


Assuntos
Diuréticos/farmacologia , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Hipertensão/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Diuréticos/uso terapêutico , Quinase do Fator 2 de Elongação/metabolismo , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , Propranolol/farmacologia , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Ratos , Ratos Endogâmicos SHR , Receptores Adrenérgicos beta/metabolismo , Circulação Renal/efeitos dos fármacos
6.
Drug Des Devel Ther ; 15: 4243-4255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675487

RESUMO

PURPOSE: Sepsis is the leading condition associated with acute kidney injury (AKI) in the hospital and intensive care unit (ICU), sepsis-induced AKI (S-AKI) is strongly associated with poor clinical outcomes. Curcumin possesses an ability to ameliorate renal injury from ischemia-reperfusion, but it is still unknown whether they have the ability to reduce S-AKI. The aim of this study was to investigate the protective effects of curcumin on S-AKI and to assess its therapeutic potential on renal function, inflammatory response, and microcirculatory perfusion. METHODS: Male Sprague-Dawley (SD) rats underwent cecal ligation and puncture (CLP) to induce S-AKI and immediately received vehicle (CLP group) or curcumin (CLP+Cur group) after surgery. At 12 and 24h after surgery, serum indexes, inflammatory factors, cardiac output (CO), renal blood flow and microcirculatory flow were measured. RESULTS: Serum levels of creatinine (Scr), cystatin C (CysC), IL-6 and TNF-α were significantly lower in the CLP+Cur group than those in the CLP group (P < 0.05). Treatment with curcumin improved renal microcirculation at 24h by measurement of contrast enhanced ultrasound (CEUS) quantitative parameters [peak intensity (PI); half of descending time (DT/2); area under curve (AUC); P < 0.05]. In histopathological analysis, treatment with curcumin reduced damage caused by CLP. CONCLUSION: Curcumin can alleviate S-AKI in rats by improving renal microcirculatory perfusion and reducing inflammatory response. Curcumin may be a potential novel therapeutic agent for the prevention or reduction of S-AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Curcumina/farmacologia , Sepse/tratamento farmacológico , Injúria Renal Aguda/fisiopatologia , Animais , Creatinina/sangue , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Microcirculação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Sepse/fisiopatologia , Fatores de Tempo
7.
Biomed Pharmacother ; 141: 111901, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328117

RESUMO

INTRODUCTION: Eucommia ulmoides leaves are used as Tochu tea, which has a blood pressure lowering effect of unknown mechanism. PURPOSE AND METHODS: The effects of Tochu tea and its component, geniposidic acid, on blood pressure and renal hemodynamics were investigated in Dahl salt-sensitive (DS) rats received 1% saline solution from 4 weeks of age. At 9 weeks of age, 1% saline alone (DSHS), Tochu tea extract added 1% saline (DSHS+T), or geniposidic acid added 1% saline (DSHS+G) was administered for another 4 weeks. DS rats fed with tap water were used as controls (DSLS). At 13 weeks, the blood pressure, the renal plasma flow (RPF) and the renal NADPH oxidase, endothelial nitric oxide synthase (eNOS) were examined. RESULTS: Blood pressure in DSHS rats was significantly increased in comparison to DSLS (144 vs. 196 mmHg, p < 0.01), and was significantly reduced in DSHS+T (158 mmHg) and DSHS+G (162 mmHg) rats. RPF in DSHS+T rats was significantly higher than in DSHS rats (p < 0.05). The expression of NADPH oxidase in DSHS rats was enhanced in comparison to DSLS rats; however, it was suppressed in DSHS+T and DSHS+G rats, and the NO production by eNOS was increased; thus, RPF was improved. The urinary Na excretion in DSHS rats was higher than that in DSLS rats; however it was further increased in DSHS+T rats without changes in the tubular Na transporters. CONCLUSION: Tochu tea and geniposidic acid suppressed NADPH oxidase, increased eNOS, and improved blood pressure and renal hemodynamics.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Eucommiaceae/química , Glucosídeos Iridoides/farmacologia , Extratos Vegetais/farmacologia , Circulação Renal/efeitos dos fármacos , Animais , Citocinas/metabolismo , Masculino , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Folhas de Planta/química , Ratos , Ratos Endogâmicos Dahl
8.
Physiol Rep ; 9(11): e14888, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110719

RESUMO

Hypercholesterolemia and oxidative stress may lead to disturbances in the renal microvasculature in response to vasoactive agents, including P2 receptors (P2R) agonists. We investigated the renal microvascular response to diadenosine tetraphosphate (Ap4 A), an agonist of P2R, in diet-induced hypercholesteremic rats over 28 days, supplemented in the last 10 days with tempol (2 mM) or DL-buthionine-(S,R)-sulfoximine (BSO, 20 mM) in the drinking water. Using laser Doppler flowmetry, renal blood perfusion in the cortex and medulla (CBP, MBP) was measured during the infusion of Ap4 A. This induced a biphasic response in the CBP: a phase of rapid decrease was followed by one of rapid increase extended for 30 min in both the normocholesterolemic and hypercholesterolemic rats. The phase of decreased CBP was not affected by tempol or BSO in either group. Early and extended increases in CBP were prevented by tempol in the hypercholesterolemia rats, while, in the normocholesterolemic rats, only the extended increase in CBP was affected by tempol; BSO prevented extended increase in CBP in normocholesterolemic rats. MBP response is not affected by hypercholesterolemia. The hypercholesterolemic rats were characterized by increased urinary albumin and 8-isoPGF2α excretion. Moreover, BSO increased the urinary excretion of nephrin in the hypercholesterolemic rats but, similar to tempol, did not affect the excretion of albumin in their urine. The results suggest the important role of redox balance in the extracellular nucleotide regulation of the renal vasculature and glomerular injury in hypercholesterolemia.


Assuntos
Fosfatos de Dinucleosídeos/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipercolesterolemia/complicações , Rim/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Rim/irrigação sanguínea , Rim/fisiopatologia , Lipídeos/sangue , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos P2/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos
9.
Crit Care ; 25(1): 207, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118980

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery, and current strategies aimed at treating AKI have proven ineffective. Levosimendan, an inodilatating agent, has been shown to increase renal blood flow and glomerular filtration rate in uncomplicated postoperative patients and in patients with the cardiorenal syndrome. We hypothesized that levosimendan through its specific effects on renal vasculature, a preferential vasodilating effect on preglomerular resistance vessels, could improve renal function in AKI-patients with who did not have clinical indication for inotropic support. METHODS: In this single-center, double-blind, randomized controlled study, adult patients with postoperative AKI within 2 days after cardiac surgery, who were hemodynamically stable with a central venous oxygen saturation (ScvO2) ≥ 60% without inotropic support were eligible for inclusion. After randomization, study drug infusions, levosimendan (n = 16) or placebo (n = 13) were given for 5 h. A bolus infusion of levosimendan (12 µg/kg), were given for 30 min followed by 0.1 µg/kg/min for 5 h. Renal blood flow and glomerular filtration rate were measured using infusion clearance of para-aminohippuric acid and a filtration marker, respectively. As a safety issue, norepinephrine was administered to maintain mean arterial pressure between 70-80 mmHg. Intra-group differences were tested by Mann-Whitney U-tests, and a linear mixed model was used to test time and group interaction. RESULTS: Twenty-nine patients completed the study. At inclusion, the mean serum creatinine was higher in the patients randomized to levosimendan (148 ± 29 vs 127 ± 22 µmol/L, p = 0.030), and the estimated GFR was lower (46 ± 12 vs 57 ± 11 ml/min/1.73 m2, p = 0.025). Levosimendan induced a significantly (p = 0.011) more pronounced increase in renal blood flow (15%) compared placebo (3%) and a more pronounced decrease in renal vascular resistance (- 18% vs. - 4%, respectively, p = 0.043). There was a trend for a minor increase in glomerular filtration rate with levosimendan (4.5%, p = 0.079), which did differ significantly from the placebo group (p = 0.440). The mean norepinephrine dose was increased by 82% in the levosimedan group and decreased by 29% in the placebo group (p = 0.012). CONCLUSIONS: In hemodynamically stable patients with AKI after cardiac surgery, levosimendan increases renal blood flow through renal vasodilatation. Trial registration NCT02531724, prospectly registered on 08/20/2015. https://clinicaltrials.gov/ct2/show/NCT02531724?cond=AKI&cntry=SE&age=1&draw=2&rank=1.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Circulação Renal/efeitos dos fármacos , Simendana/farmacologia , Injúria Renal Aguda/fisiopatologia , Adulto , Idoso , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/métodos , Método Duplo-Cego , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Simendana/efeitos adversos , Estatísticas não Paramétricas , Suécia , Vasodilatadores/efeitos adversos , Vasodilatadores/farmacologia
10.
Biomed Pharmacother ; 139: 111488, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33957564

RESUMO

Despite the renal expression of P2Y12, the purinergic receptor for adenosine diphosphate, few data are available to discuss the renotherapeutic potential of ticagrelor, one of its reversible blockers. Indeed, the tonic inhibitory effect of this receptor has been linked to the activation of exchange protein activated by cyclic adenosine monophosphate-1 (Epac-1) protein through the cyclic adenosine monophosphate cascade. Epac-1 is considered a crossroad protein, where its activation has been documented to manage renal injury models. Hence, the current study aimed to investigate the possible therapeutic effectiveness of ticagrelor, against renal ischemia/reperfusion (I/R) model with emphasis on the involvement of Epac-1 signaling pathway using R-CE3F4, a selective Epac-1 blocker. Accordingly, rats were randomized into four groups; viz., sham-operated, renal I/R, I/R post-treated with ticagrelor for 3 days, and ticagrelor + R-CE3F4. Treatment with ticagrelor ameliorated the I/R-mediated structural alterations and improved renal function manifested by the reduction in serum BUN and creatinine. On the molecular level, ticagrelor enhanced renal Epac-1 mRNA expression, Rap-1 activation (Rap-1-GTP) and SOCS-3 level. On the contrary, it inhibited the protein expression of JAK-2/STAT-3 hub, TNF-α and MDA contents, as well as caspase-3 activity. Additionally, ticagrelor enhanced the protein expression/content of AKT/Nrf-2/HO-1 axis. All these beneficial effects were obviously antagonized upon using R-CE3F4. In conclusion, ticagrelor reno-therapeutic effect is partly mediated through modulating the Epac-1/Rap-1-GTP, AKT/Nrf-2/HO-1 and JAK-2/STAT-3/SOCS-3 trajectories, pathways that integrate to afford novel explanations to its anti-inflammatory, anti-oxidant, and anti-apoptotic potentials.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Fatores de Troca do Nucleotídeo Guanina/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ticagrelor/uso terapêutico , Proteínas rap1 de Ligação ao GTP/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Isquemia , Testes de Função Renal , Masculino , Ratos , Ratos Wistar , Circulação Renal/efeitos dos fármacos , Proteínas rap1 de Ligação ao GTP/antagonistas & inibidores
11.
Am J Physiol Renal Physiol ; 320(5): F761-F771, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645318

RESUMO

Inhibitors of the main proximal tubular Na-glucose cotransporter (SGLT2) mitigate diabetic glomerular hyperfiltration and have been approved by the United States Food and Drug Administration for slowing the progression of diabetic kidney disease. It has been proposed that SGLT2 inhibitors improve hard renal outcomes by reducing glomerular capillary pressure (PGC) via a tubuloglomerular feedback (TGF) response to a decrease in proximal reabsorption (Jprox). However, the effect of SGLT2 inhibition on PGC has not been measured. Here, we studied the effects of acute SGLT2 blockade (ertugliflozin) on Jprox and glomerular hemodynamics in two-period micropuncture experiments using streptozotocin-induced diabetic rats fed high- or low-NaCl diets. PGC was measured by direct capillary puncture or computed from tubular stop-flow pressure (PSF). TGF is intact while measuring PGC directly but rendered inoperative when measuring PSF. Acute SGLT2 inhibitor reduced Jprox by ∼30%, reduced PGC by 5-8 mmHg, and reduced glomerular filtration rate (GFR) by ∼25% (all P < 0.0001) but had no effect on PSF. The decrease in PGC was larger with the low-NaCl diet (8 vs. 5 mmHg, P = 0.04) where PGC was higher to begin with (54 vs. 50 mmHg, P = 0.003). Greater decreases in PGC corresponded, unexpectedly, to lesser decreases in GFR (P = 0.04). In conclusion, these results confirm expectations that PGC would decline in response to acute SGLT2 inhibition and that a functioning TGF system is required for this. We infer a contribution of postglomerular vasorelaxation to the TGF responses where decreases in PGC were large and decreases in GFR were small.NEW & NOTEWORTHY It has been theorized that Na-glucose cotransporter (SGLT2) blockade slows progression of diabetic kidney disease by reducing physical strain on the glomerulus. This is the first direct measurement of intraglomerular pressure during SGLT2 blockade. Findings confirmed that SGLT2 blockade does reduce glomerular capillary pressure, that this is mediated through tubuloglomerular feedback, and that the tubuloglomerular feedback response to SGLT2 blockade involves preglomerular vasoconstriction and postglomerular vasorelaxation.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Hemodinâmica/efeitos dos fármacos , Glomérulos Renais/irrigação sanguínea , Circulação Renal/efeitos dos fármacos , Cloreto de Sódio na Dieta/administração & dosagem , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Dieta Hipossódica , Progressão da Doença , Taxa de Filtração Glomerular/efeitos dos fármacos , Masculino , Punções , Ratos Wistar , Reabsorção Renal/efeitos dos fármacos , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Estreptozocina
12.
Am J Physiol Renal Physiol ; 320(4): F644-F653, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615887

RESUMO

The kidneys are an important target for angiotensin II (ANG II). In adult kidneys, the effects of ANG II are mediated mainly by ANG II type 1 (AT1) receptors. AT1 receptor expression has been reported for a variety of different cell types within the kidneys, suggesting a broad spectrum of actions for ANG II. Since there have been heterogeneous results in the literature regarding the intrarenal distribution of AT1 receptors, this study aimed to obtain a comprehensive overview about the localization of AT1 receptor expression in mouse, rat, and human kidneys. Using the cell-specific and high-resolution RNAscope technique, we performed colocalization experiments with various cell markers to specifically discriminate between different segments of the tubular and vascular system. Overall, we found a similar pattern of AT1 mRNA expression in mouse, rat, and human kidneys. AT1 receptors were detected in mesangial cells and renin-producing cells. In addition, AT1 mRNA was found in interstitial cells of the cortex and outer medulla. In rodents, late afferent and early efferent arterioles expressed AT1 receptor mRNA, but larger vessels of the investigated species showed no AT1 expression. Tubular expression of AT1 mRNA was species dependent with a strong expression in proximal tubules of mice, whereas expression was undetectable in human tubular cells. These findings suggest that the (juxta)glomerular area and tubulointerstitium are conserved expression sites for AT1 receptors across species and might present the main target sites for ANG II in adult human and rodent kidneys.NEW & NOTEWORTHY Angiotensin II (ANG II) type 1 (AT1) receptors are essential for mediating the effects of ANG II in the kidneys. This study aimed to obtain a comprehensive overview about the cell-specific localization of AT1 receptor expression in rodent and human kidneys using the novel RNAscope technique. We found that the conserved AT1 receptor mRNA expression sites across species are the (juxta)glomerular areas and tubulointerstitium, which might present main target sites for ANG II in adult human and rodent kidneys.


Assuntos
Angiotensina II/farmacologia , Expressão Gênica/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Angiotensina I/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Roedores/genética , Roedores/metabolismo
13.
Sci Rep ; 11(1): 4271, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608612

RESUMO

To provide novel insights into the pathogenesis of heart failure-induced renal dysfunction, we compared the effects of ACE inhibitor (ACEi) and AT1 receptor blocker (ARB) on systemic and kidney hemodynamics during heart failure in normotensive HanSD and hypertensive transgenic (TGR) rats. High-output heart failure was induced by creating an aorto-caval fistula (ACF). After five weeks, rats were either left untreated or treatment with ACEi or ARB was started for 15 weeks. Subsequently, echocardiographic, renal hemodynamic and biochemical measurements were assessed. Untreated ACF rats with ACF displayed significantly reduced renal blood flow (RBF) (HanSD: 8.9 ± 1.0 vs. 4.7 ± 1.6; TGR: 10.2 ± 1.9 vs. 5.9 ± 1.2 ml/min, both P < .001), ACEi had no major RBF effect, whereas ARB completely restored RBF (HanSD: 5.6 ± 1.1 vs. 9.0 ± 1.5; TGR: 7.0 ± 1.2 vs. 10.9 ± 1.9 ml/min, both P < .001). RBF reduction in untreated and ACEi-treated rats was accompanied by renal hypoxia as measured by renal lactate dehydrogenase activity, which was ameliorated with ARB treatment (HanSD: 40 ± 4 vs. 42 ± 3 vs. 29 ± 5; TGR: 88 ± 4 vs. 76 ± 4 vs. 58 ± 4 milliunits/mL, all P < .01). Unlike improvement seen in ARB-treated rats, ACE inhibition didn't affect urinary nitrates compared to untreated ACF TGR rats (50 ± 14 vs. 22 ± 13 vs. 30 ± 13 µmol/mmol Cr, both P < .05). ARB was more effective than ACEi in reducing elevated renal oxidative stress following ACF placement. A marker of ACEi efficacy, the angiotensin I/angiotensin II ratio, was more than ten times lower in renal tissue than in plasma. Our study shows that ARB treatment, in contrast to ACEi administration, prevents renal hypoperfusion and hypoxia in ACF rats with concomitant improvement in NO bioavailability and oxidative stress reduction. The inability of ACE inhibition to improve renal hypoperfusion in ACF rats may result from incomplete intrarenal RAS suppression in the face of depleted compensatory mechanisms.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Insuficiência Cardíaca/complicações , Insuficiência Renal/etiologia , Insuficiência Renal/prevenção & controle , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Biomarcadores , Pressão Sanguínea , Modelos Animais de Doenças , Suscetibilidade a Doenças , Insuficiência Cardíaca/etiologia , Hemodinâmica/efeitos dos fármacos , Hipertensão/complicações , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Circulação Renal/efeitos dos fármacos , Insuficiência Renal/metabolismo
14.
J Vasc Res ; 58(1): 38-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33207336

RESUMO

Diabetes through adenosine A1 receptor (A1R) and P2 receptors (P2Rs) may lead to disturbances in renal microvasculature. We investigated the renal microvascular response to Ap4A, an agonist of P2Rs, in streptozotocin-induced diabetic rats. Using laser Doppler flowmetry, renal blood perfusion (RBP) was measured during infusion of Ap4A alone or in the presence of A1R antagonist, either DPCPX (8-cyclopentyl-1,3-dipropylxanthine) or 8-cyclopentyltheophylline (CPT). Ap4A induced a biphasic response in RBP: a phase of rapid decrease was followed by a rapid increase, which was transient in diabetic rats but extended for 30 min in nondiabetic rats. Phase of decreased RBP was not affected by DPCPX or CPT in either group. Early and extended increases in RBP were prevented by DPCPX and CPT in nondiabetic rats, while in diabetic rats, the early increase in RBP was not affected by these antagonists. A1R mRNA and protein levels were increased in isolated glomeruli of diabetic rats, but no changes were detected in P2Y1R and P2Y2R mRNA. Presence of unblocked A1R is a prerequisite for the P2R-mediated relaxing effect of Ap4A in nondiabetic conditions, but influence of A1R on P2R-mediated renal vasorelaxation is abolished under diabetic conditions.


Assuntos
Hidrolases Anidrido Ácido/farmacologia , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Córtex Renal/irrigação sanguínea , Medula Renal/irrigação sanguínea , Agonistas do Receptor Purinérgico P2/farmacologia , Receptor A1 de Adenosina/metabolismo , Circulação Renal/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Velocidade do Fluxo Sanguíneo , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Córtex Renal/metabolismo , Medula Renal/metabolismo , Masculino , Ratos Wistar , Receptor Cross-Talk , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
15.
Nephrology (Carlton) ; 26(5): 377-390, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33283420

RESUMO

Diabetic kidney disease remains the leading cause of end-stage kidney disease and a major risk factor for cardiovascular disease. Large cardiovascular outcome trials and dedicated kidney trials have shown that sodium-glucose cotransporter (SGLT)2 inhibitors reduce cardiovascular morbidity and mortality and attenuate hard renal outcomes in patients with type 2 diabetes (T2D). Underlying mechanisms explaining these renal benefits may be mediated by decreased glomerular hypertension, possibly by vasodilation of the post-glomerular arteriole. People with T2D often receive several different drugs, some of which could also impact the renal vasculature, and could therefore modify both renal efficacy and safety of SGLT2 inhibition. The most commonly prescribed drugs that could interact with SGLT2 inhibitors on renal haemodynamic function include renin-angiotensin system inhibitors, calcium channel blockers and diuretics. Herein, we review the effects of these drugs on renal haemodynamic function in people with T2D and focus on studies that measured glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) with gold-standard techniques. In addition, we posit, based on these observations, potential interactions with SGLT2 inhibitors with an emphasis on efficacy and safety.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Diuréticos/farmacologia , Hemodinâmica/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Diuréticos/uso terapêutico , Interações Medicamentosas , Humanos , Sistema Renina-Angiotensina/efeitos dos fármacos
16.
Am J Nephrol ; 51(11): 891-902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33130676

RESUMO

BACKGROUND: Chronic renovascular disease (RVD) can lead to a progressive loss of renal function, and current treatments are inefficient. We designed a fusion of vascular endothelial growth factor (VEGF) conjugated to an elastin-like polypeptide (ELP) carrier protein with an N-terminal kidney-targeting peptide (KTP). We tested the hypothesis that KTP-ELP-VEGF therapy will effectively recover renal function with an improved targeting profile. Further, we aimed to elucidate potential mechanisms driving renal recovery. METHODS: Unilateral RVD was induced in 14 pigs. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified by multidetector CT imaging. Pigs then received a single intrarenal injection of KTP-ELP-VEGF or vehicle. CT quantification of renal hemodynamics was repeated 4 weeks later, and then pigs were euthanized. Ex vivo renal microvascular (MV) density and media-to-lumen ratio, macrophage infiltration, and fibrosis were quantified. In parallel, THP-1 human monocytes were differentiated into naïve macrophages (M0) or inflammatory macrophages (M1) and incubated with VEGF, KTP-ELP, KTP-ELP-VEGF, or control media. The mRNA expression of macrophage polarization and angiogenic markers was quantified (qPCR). RESULTS: Intrarenal KTP-ELP-VEGF improved RBF, GFR, and MV density and attenuated MV media-to-lumen ratio and renal fibrosis compared to placebo, accompanied by augmented renal M2 macrophages. In vitro, exposure to VEGF/KTP-ELP-VEGF shifted M0 macrophages to a proangiogenic M2 phenotype while M1s were nonresponsive to VEGF treatment. CONCLUSIONS: Our results support the efficacy of a new renal-specific biologic construct in recovering renal function and suggest that VEGF may directly influence macrophage phenotype as a possible mechanism to improve MV integrity and function in the stenotic kidney.


Assuntos
Proteínas Recombinantes de Fusão/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Obstrução da Artéria Renal/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Aterosclerose/complicações , Aterosclerose/tratamento farmacológico , Modelos Animais de Doenças , Elastina/administração & dosagem , Elastina/genética , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Peptídeos/administração & dosagem , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Obstrução da Artéria Renal/etiologia , Circulação Renal/efeitos dos fármacos , Sus scrofa , Fator A de Crescimento do Endotélio Vascular/genética
17.
Am J Physiol Renal Physiol ; 319(6): F1054-F1066, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135478

RESUMO

In the present study, we demonstrated the marked activity of SW033291, an inhibitor of 15-hydoxyprostaglandin dehydrogenase (15-PGDH), in preventing acute kidney injury (AKI) in a murine model of ischemia-reperfusion injury. AKI due to ischemic injury represents a significant clinical problem. PGE2 is vasodilatory in the kidney, but it is rapidly degraded in vivo due to catabolism by 15-PGDH. We investigated the potential of SW033291, a potent and specific 15-PGDH inhibitor, as prophylactic treatment for ischemic AKI. Prophylactic administration of SW033291 significantly increased renal tissue PGE2 levels and increased post-AKI renal blood flow and renal arteriole area. In parallel, prophylactic SW033291 decreased post-AKI renal morphology injury scores and tubular apoptosis and markedly reduced biomarkers of renal injury that included blood urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Prophylactic SW033291 also reduced post-AKI induction of proinflammatory cytokines, high-mobility group box 1, and malondialdehyde. Protective effects of SW033291 were mediated by PGE2 signaling, as they could be blocked by pharmacological inhibition of PGE2 synthesis. Consistent with activation of PGE2 signaling, SW033291 induced renal levels of both EP4 receptors and cAMP, along with other vasodilatory effectors, including AMP, adenosine, and the adenosine A2A receptor. The protective effects of SW0333291 could largely be achieved with a single prophylactic dose of the drug. Inhibition of 15-PGDH may thus represent a novel strategy for prophylaxis of ischemic AKI in multiple clinical settings, including renal transplantation and cardiovascular surgery.


Assuntos
Injúria Renal Aguda/prevenção & controle , Adenosina/metabolismo , Dinoprostona/metabolismo , Inibidores Enzimáticos/farmacologia , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Piridinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Circulação Renal/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Tiofenos/farmacologia , Vasodilatação/efeitos dos fármacos , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Hidroxiprostaglandina Desidrogenases/metabolismo , Rim/enzimologia , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais
18.
Sci Rep ; 10(1): 17924, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087778

RESUMO

Hypotensive events are strongly correlated to the occurrence of perioperative acute kidney injury, but the underlying mechanisms for this are not completely elucidated. We hypothesised that anaesthesia-induced hypotension causes renal vasoconstriction and decreased oxygen delivery via angiotensin II-mediated renal vasoconstriction. Pigs were anaesthetised, surgically prepared and randomised to vehicle/losartan treatment (0.15 mg*kg-1). A deliberate reduction in arterial blood pressure was caused by infusion of propofol (30 mg*kg-1) for 10 min. Renal function and haemodynamics were recorded 60 min before and after hypotension. Propofol induced hypotension in all animals (p < 0.001). Renal blood flow (RBF) and renal oxygen delivery (RDO2) decreased significantly regardless of treatment but more so in vehicle-treated compared to losartan-treated (p = 0.001, p = 0.02, respectively). During recovery RBF and RDO2 improved to a greater extent in the losartan-treated compared to vehicle-treated (+ 28 ml*min-1, 95%CI 8-50 ml*min-1, p = 0.01 and + 3.1 ml*min-1, 95%CI 0.3-5.8 ml*min-1, p = 0.03, respectively). Sixty minutes after hypotension RBF and RDO2 remained depressed in vehicle-treated, as renal vascular resistance was still increased (p < 0.001). In losartan-treated animals RBF and RDO2 had normalised. Pre-treatment with losartan improved recovery of renal blood flow and renal oxygen delivery after propofol-induced hypotension, suggesting pronounced angiotensin II-mediated renal vasoconstriction during blood pressure reductions caused by anaesthesia.


Assuntos
Anestésicos Intravenosos/efeitos adversos , Antagonistas de Receptores de Angiotensina/administração & dosagem , Antagonistas de Receptores de Angiotensina/farmacologia , Hipotensão/induzido quimicamente , Hipotensão/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Losartan/administração & dosagem , Losartan/farmacologia , Oxigênio/metabolismo , Propofol/efeitos adversos , Recuperação de Função Fisiológica/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Angiotensina II/fisiologia , Animais , Feminino , Hipotensão/fisiopatologia , Masculino , Cuidados Pré-Operatórios , Suínos
19.
Nitric Oxide ; 104-105: 20-28, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828841

RESUMO

The adenosine (Ado) system may participate in regulation of kidney function in diabetes mellitus (DM), therefore we explored its role and interrelation with NO in the control of renal circulation and excretion in normoglycemic (NG) and streptozotocin-diabetic (DM) rats. Effects of theophylline (Theo), a non-selective Ado receptor antagonist, were examined in anaesthetized NG or in streptozotocin induced diabetic (DM) rats, untreated or after blockade of NO synthesis with l-NAME. We measured arterial blood pressure (MABP), whole kidney blood flow and renal regional flows: cortical and outer- and inner-medullary (IMBF), determined as laser-Doppler fluxes. Renal excretion of water, total solutes and sodium and in situ renal tissue NO signal (selective electrodes) were also determined. Theo experiments disclosed minor baseline vasoconstrictor and vasodilator tone in the kidney of NG and DM rats, respectively. NO blockade increased baseline MABP and decreased renal haemodynamics, similarly in NG and DM rats, indicating comparable vasodilator influence of NO in the two groups. Unexpectedly, in all rats with intact NO synthesis, Ado receptor blockade increased kidney tissue NO. In NO-deficient NG and DM rats, Ado receptor blockade induced comparable renal vasodilatation, suggesting similar vasoconstrictor influence of the Ado system. However, DM rats showed an unexplained association of decreased MABP and IMBF and increased NO signal. Higher baseline renal excretion in DM rats indicated inhibition of renal tubular reabsorption due to the prevalence of natriuretic A2 over antinatriuretic A1 receptors. In conclusion, the experiments provided new insights in functional interrelation of adenosine and NO in normoglycaemia and streptozotocin-diabetes.


Assuntos
Adenosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Rim/metabolismo , Óxido Nítrico/metabolismo , Circulação Renal/efeitos dos fármacos , Eliminação Renal/efeitos dos fármacos , Animais , Pressão Arterial/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Inibidores Enzimáticos/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase/antagonistas & inibidores , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Estreptozocina , Teofilina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...