Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Mol Biol ; 436(6): 168449, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244767

RESUMO

Inhibition of Insulin-Regulated Aminopeptidase is being actively explored for the treatment of several human diseases and several classes of inhibitors have been developed although no clinical applications have been reported yet. Here, we combine enzymological analysis with x-ray crystallography to investigate the mechanism employed by two of the most studied inhibitors of IRAP, an aryl sulfonamide and a 2-amino-4H-benzopyran named HFI-419. Although both compounds have been hypothesized to target the enzyme's active site by competitive mechanisms, we discovered that they instead target previously unidentified proximal allosteric sites and utilize non-competitive inhibition mechanisms. X-ray crystallographic analysis demonstrated that the aryl sulfonamide stabilizes the closed, more active, conformation of the enzyme whereas HFI-419 locks the enzyme in a semi-open, and likely less active, conformation. HFI-419 potency is substrate-dependent and fails to effectively block the degradation of the physiological substrate cyclic peptide oxytocin. Our findings demonstrate alternative mechanisms for inhibiting IRAP through allosteric sites and conformational restricting and suggest that the pharmacology of HFI-419 may be more complicated than initially considered. Such conformation-specific interactions between IRAP and small molecules can be exploited for the design of more effective second-generation allosteric inhibitors.


Assuntos
Sítio Alostérico , Inibidores Enzimáticos , Insulina , Sulfonamidas , Humanos , Domínio Catalítico/efeitos dos fármacos , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Insulina/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Cristalografia por Raios X , Regulação Alostérica , Sítio Alostérico/efeitos dos fármacos , Células HEK293 , Células CHO , Animais , Cricetulus
2.
Sci Rep ; 13(1): 19722, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957163

RESUMO

Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.


Assuntos
Cistinil Aminopeptidase , AVC Isquêmico , Animais , Camundongos , Ratos , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Infarto , AVC Isquêmico/tratamento farmacológico , Neuroproteção , Ratos Endogâmicos SHR
3.
ChemistryOpen ; 9(3): 325-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32154052

RESUMO

Insulin-regulated aminopeptidase (IRAP) is a new potential macromolecular target for drugs aimed for treatment of cognitive disorders. Inhibition of IRAP by angiotensin IV (Ang IV) improves the memory and learning in rats. The majority of the known IRAP inhibitors are peptidic in character and suffer from poor pharmacokinetic properties. Herein, we present a series of small non-peptide IRAP inhibitors derived from a spiro-oxindole dihydroquinazolinone screening hit (pIC50 5.8). The compounds were synthesized either by a simple microwave (MW)-promoted three-component reaction, or by a two-step one-pot procedure. For decoration of the oxindole ring system, rapid MW-assisted Suzuki-Miyaura cross-couplings (1 min) were performed. A small improvement of potency (pIC50 6.6 for the most potent compound) and an increased solubility could be achieved. As deduced from computational modelling and MD simulations it is proposed that the S-configuration of the spiro-oxindole dihydroquinazolinones accounts for the inhibition of IRAP.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Oxindóis/síntese química , Inibidores de Proteases/síntese química , Quinazolinonas/síntese química , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Oxindóis/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Quinazolinonas/metabolismo , Ratos , Receptores de Angiotensina/metabolismo , Solubilidade , Relação Estrutura-Atividade
4.
J Neurochem ; 153(4): 485-494, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31556456

RESUMO

Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density. We aimed to identify the potential mechanism by which HFI-419 enhances memory by utilizing rat primary cultures of hippocampal cells. Alterations to dendritic spine density were assessed in the presence of varying concentrations of HFI-419 at different stages of hippocampal cell development. In addition, glucose uptake and changes to spine density were assessed in the presence of indinavir, an inhibitor of the glucose transporter 4 (GLUT4 ), or the matrix metalloprotease inhibitor CAS 204140-01-2. We confirmed that inhibition of IRAP activity with HFI-419 enhanced spatial working memory in rats, and determined that this enhancement may be driven by GLUT4 -mediated changes to dendritic spine density. We observed that IRAP inhibition increased dendritic spine density prior to peak dendritic growth in hippocampal neurons, and that spine formation was inhibited when GLUT4 -mediated glucose uptake was blocked. In addition, during the peak phase of dendritic spine growth, the effect of IRAP inhibition on enhancement of dendritic spine density resulted specifically in an increase in the proportion of mushroom/stubby-like spines, a morphology associated with memory and learning. Moreover, these spines were deemed to be functional based on their expression of the pre-synaptic markers vesicular glutamate transporter 1 and synapsin. Overall, or findings suggest that IRAP inhibitors may facilitate memory by increasing hippocampal dendritic spine density via a GLUT4 -mediated mechanism. Cover Image for this issue: doi: 10.1111/jnc.14745.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/metabolismo , Glucose/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
5.
J Med Chem ; 60(7): 2963-2972, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28328206

RESUMO

Insulin-regulated aminopeptidase (IRAP) is an enzyme with several important biological functions that is known to process a large variety of different peptidic substrates, although the mechanism behind this wide specificity is not clearly understood. We describe a crystal structure of IRAP in complex with a recently developed bioactive and selective inhibitor at 2.53 Å resolution. In the presence of this inhibitor, the enzyme adopts a novel conformation in which domains II and IV are juxtaposed, forming a hollow structure that excludes external solvent access to the catalytic center. A loop adjacent to the enzyme's GAMEN motif undergoes structural reconfiguration, allowing the accommodation of bulky inhibitor side chains. Atomic interactions between the inhibitor and IRAP that are unique to this conformation can explain the strong selectivity compared to homologous aminopeptidases ERAP1 and ERAP2. This conformation provides insight on IRAP's catalytic cycle and reveals significant active-site plasticity that may underlie its substrate permissiveness.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Inibidores Enzimáticos/farmacologia , Conformação Proteica/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Cistinil Aminopeptidase/química , Inibidores Enzimáticos/química , Humanos , Ligantes , Modelos Moleculares , Peptídeos/metabolismo , Especificidade por Substrato
6.
J Mol Endocrinol ; 58(4): 193-198, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28356324

RESUMO

Insulin-regulated aminopeptidase (IRAP) co-localizes with the glucose transporter 4 (GLUT4) in GLUT4 storage vesicles (GSV) in insulin-responsive cells. In response to insulin, IRAP is the only transmembrane enzyme known to translocate together with GLUT4 to the plasma membrane in adipocytes and muscle cells. Although the intracellular region of IRAP is associated with GLUT4 vesicle trafficking, the role of the aminopeptidase activity in insulin-responsive cells has not been elucidated. The aim of this study was to investigate whether the inhibition of the aminopeptidase activity of IRAP facilitates glucose uptake in insulin-responsive cells. In both in vitro and in vivo studies, inhibition of IRAP aminopeptidase activity with the specific inhibitor, HFI-419, did not modulate glucose uptake. IRAP inhibition in the L6GLUT4myc cell line did not alter glucose uptake in both basal and insulin-stimulated state. In keeping with these results, HFI419 did not affect peripheral, whole-body glucose handling after an oral glucose challenge, neither in normal rats nor in the streptozotocin (STZ)-induced experimental rat model of diabetes mellitus (DM). Therefore, acute inhibition of IRAP aminopeptidase activity does not affect glucose homeostasis.


Assuntos
Cistinil Aminopeptidase/genética , Diabetes Mellitus Experimental/enzimologia , Transportador de Glucose Tipo 4/genética , Glucose/metabolismo , Insulina/farmacologia , Animais , Transporte Biológico , Diferenciação Celular , Linhagem Celular , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Desoxiglucose/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Masculino , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Inibidores de Proteases/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina
7.
Biomed Pharmacother ; 86: 23-26, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27936390

RESUMO

Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm.


Assuntos
Acetilcolina/toxicidade , Aorta Abdominal/enzimologia , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Inibidores Enzimáticos/farmacologia , Vasoconstrição/fisiologia , Animais , Aorta Abdominal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Masculino , Técnicas de Cultura de Órgãos , Coelhos , Vasoconstrição/efeitos dos fármacos
8.
J Med Chem ; 59(19): 9107-9123, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27606717

RESUMO

The oxytocinase subfamily of M1 aminopeptidases, consisting of ER aminopeptidase 1 (ERAP1), ER aminopeptidase 2 (ERAP2), and insulin-regulated aminopeptidase (IRAP), plays critical roles in the generation of antigenic peptides and indirectly regulates human adaptive immune responses. We have previously demonstrated that phosphinic pseudotripeptides can constitute potent inhibitors of this group of enzymes. In this study, we used synthetic methodologies able to furnish a series of stereochemically defined phosphinic pseudotripeptides and demonstrate that side chains at P1' and P2' positions are critical determinants in driving potency and selectivity. We identified low nanomolar inhibitors of ERAP2 and IRAP that display selectivity of more than 2 and 3 orders of magnitude, respectively. Cellular analysis demonstrated that one of the compounds that is a selective IRAP inhibitor can reduce IRAP-dependent but not ERAP1-dependent cross-presentation by dendritic cells with nanomolar efficacy. Our results encourage further preclinical development of phosphinic pseudotripeptides as regulators of adaptive immune responses.


Assuntos
Aminopeptidases/antagonistas & inibidores , Cistinil Aminopeptidase/antagonistas & inibidores , Fosfinas/química , Fosfinas/farmacologia , Aminopeptidases/imunologia , Animais , Linhagem Celular , Cistinil Aminopeptidase/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Desenho de Fármacos , Humanos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Peptídeos/imunologia , Relação Estrutura-Atividade
9.
ACS Chem Neurosci ; 7(10): 1383-1392, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27501164

RESUMO

The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of IRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug-like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors. A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Espinhas Dendríticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/citologia , Sulfonamidas/farmacologia , Animais , Antígenos CD13/metabolismo , Células Cultivadas , Técnicas de Cocultura , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Sulfonamidas/síntese química
10.
Assay Drug Dev Technol ; 14(3): 180-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27078680

RESUMO

Intracerebroventricular injection of angiotensin IV, a ligand of insulin-regulated aminopeptidase (IRAP), has been shown to improve cognitive functions in several animal models. Consequently, IRAP is considered a potential target for treatment of cognitive disorders. To identify nonpeptidic IRAP inhibitors, we adapted an established enzymatic assay based on membrane preparations from Chinese hamster ovary cells and a synthetic peptide-like substrate for high-throughput screening purposes. The 384-well microplate-based absorbance assay was used to screen a diverse set of 10,500 compounds for their inhibitory capacity of IRAP. The assay performance was robust with Z'-values ranging from 0.81 to 0.91, and the screen resulted in 23 compounds that displayed greater than 60% inhibition at a compound concentration of 10 µM. After hit confirmation experiments, purity analysis, and promiscuity investigations, three structurally different compounds were considered particularly interesting as starting points for the development of small-molecule-based IRAP inhibitors. After resynthesis, all three compounds confirmed low µM activity and were shown to be rapidly reversible. Additional characterization included activity in a fluorescence-based orthogonal assay and in the presence of a nonionic detergent and a reducing agent, respectively. Importantly, the characterized compounds also showed inhibition of the human ortholog, prompting our further interest in these novel IRAP inhibitors.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Inibidores de Proteases/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
11.
Mol Pharmacol ; 89(4): 413-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769413

RESUMO

Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/metabolismo , Dissulfetos/metabolismo , Compostos Macrocíclicos/metabolismo , Animais , Células Cultivadas , Cristalografia , Cistinil Aminopeptidase/análise , Espinhas Dendríticas/química , Dissulfetos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Humanos , Compostos Macrocíclicos/farmacologia , Gravidez , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
12.
J Chem Inf Model ; 55(9): 1984-93, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26252078

RESUMO

Transition state and high energy intermediate mimetics have the potential to be very potent enzyme inhibitors. In this study, a model of peptide hydrolysis in the active site of insulin-regulated aminopeptidase (IRAP) was developed using density functional theory calculations and the cluster approach. The 3D structure models of the reaction coordinates were used for virtual screening to obtain new chemical starting points for IRAP inhibitors. This mechanism-based virtual screening process managed to identify several known peptidase inhibitors from a library of over 5 million compounds, and biological testing identified one compound not previously reported as an IRAP inhibitor. This novel methodology for virtual screening is a promising approach to identify new inhibitors mimicking key transition states or intermediates of an enzymatic reaction.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Inibidores Enzimáticos/química , Teoria Quântica , Termodinâmica , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cistinil Aminopeptidase/química , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Estrutura Molecular
13.
Bioorg Med Chem Lett ; 23(17): 4832-6, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23916253

RESUMO

Endoplasmic reticulum aminopeptidases, ERAP1 and ERAP2, as well as Insulin regulated aminopeptidase (IRAP) play key roles in antigen processing, and have recently emerged as biologically important targets for manipulation of antigen presentation. Taking advantage of the available structural and substrate-selectivity data for these enzymes, we have rationally designed a new series of inhibitors that display low micromolar activity. The selectivity profile for these three highly homologous aminopeptidases provides a promising avenue for modulating intracellular antigen processing.


Assuntos
Aminopeptidases/antagonistas & inibidores , Cistinil Aminopeptidase/antagonistas & inibidores , Retículo Endoplasmático/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares
14.
Eur J Pharmacol ; 683(1-3): 155-60, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22433837

RESUMO

Low doses of oxytocin enhance learning and memory in animal models. Angiotensin IV inhibits cysteine aminopeptidase, also known as insulin-regulated aminopeptidase and oxytocinase, and enhances memory in animals. The mechanism of this effect of angiotensin IV is unknown. This study explored the role of oxytocin in the cognitive effects of angiotensin IV with physostigmine as a control and used isolated smooth muscle to assess the pharmacological selectivity of the observed antagonism. Using novel object recognition in male mice, the effects of angiotensin IV (4.7 µg/kg), oxytocin (0.1 ng/kg) or physostigmine (200 µg/kg) administered subcutaneously immediately after the second training trial, were assessed in the presence and absence of 10 µg/kg ß-mercapto-ß-ß-cyclopenta-methylenepropionyl; O-Me-Tyr², Orn8-oxytocin, an oxytocin antagonist; n=8 in all cases. The effects of the antagonist on angiotensin IV, oxytocin and acetylcholine-induced contractions of rat isolated uterus were also determined. Oxytocin, angiotensin IV and physostigmine significantly enhanced consolidation of learning (P=0.04, 0.004 and 0.008 respectively), and there were no significant effects on locomotor activity. The oxytocin antagonist similarly not only significantly improved novel object recognition (P=0.03) but also significantly increased locomotor activity (P=0.04). In the learning paradigm the oxytocin antagonist prevented the effects of oxytocin, angiotensin IV and physostigmine but in the uterus, contractions induced by angiotensin IV and acetylcholine were unaffected whilst effects of oxytocin were significantly reduced. These results suggest that the pro-cognitive effects of angiotensin IV may be mediated by accumulation of endogenous oxytocin although the mechanisms underlying the observed interaction between the oxytocin antagonist and physostigmine are unclear.


Assuntos
Angiotensinas/farmacologia , Cognição/efeitos dos fármacos , Cistinil Aminopeptidase/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Nootrópicos/farmacologia , Ocitocina/antagonistas & inibidores , Fisostigmina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Técnicas In Vitro , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Miométrio/efeitos dos fármacos , Nootrópicos/antagonistas & inibidores , Ocitocina/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Horm Behav ; 61(3): 340-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22206823

RESUMO

Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the peptide to the etiology of the disorder is not yet conclusive, evidence from multiple animal models suggest modulation of the OT system may be a viable strategy for the pharmacological treatment of social deficits. In this review, we will discuss how animal models have been utilized to understand the role of OT in social cognition and how those findings can be applied to the conceptualization and treatment of the social impairments in ASD. Animal models with genetic alterations of the OT system, like the OT, OT receptor and CD38 knock-out mice, and those with phenotypic variation in social behavior, like BTBR inbred mice and prairie voles, coupled with behavioral paradigms with face and construct validity may prove to have predictive validity for identifying the most efficacious methods of stimulating the OT system to enhance social cognition in humans. The widespread use of strong animal models of social cognition has the potential yield pharmacological, interventions for the treatment social impairments psychiatric disorders. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Assuntos
Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Descoberta de Drogas , Ocitocina/fisiologia , Administração Intranasal , Animais , Ansiedade/psicologia , Arvicolinae , Transtorno Autístico/terapia , Terapia Comportamental , Cistinil Aminopeptidase/antagonistas & inibidores , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Modelos Psicológicos , Ocitocina/administração & dosagem , Ocitocina/genética , Ocitocina/uso terapêutico , Fenótipo , Receptores de Ocitocina/agonistas , Reconhecimento Psicológico/fisiologia , Comportamento Social
16.
J Med Chem ; 54(11): 3779-92, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21476495

RESUMO

Macrocyclic analogues of angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) targeting the insulin-regulated aminopeptidase (IRAP) have been designed, synthesized, and evaluated biologically. Replacement of His(4)-Pro(5)-Phe(6) by a 2-(aminomethyl)phenylacetic acid (AMPAA) moiety and of Val(1) and Ile(3) by amino acids bearing olefinic side chains followed by macrocyclization provided potent IRAP inhibitors. The impact of the ring size and the type (saturated versus unsaturated), configuration, and position of the carbon-carbon bridge was assessed. The ring size generally affects the potency more than the carbon-carbon bond characteristics. Replacing Tyr(2) by ß(3)hTyr or Phe is accepted, while N-methylation of Tyr(2) is deleterious for activity. Removal of the carboxyl group in the C-terminal slightly reduced the potency. Inhibitors 7 (K(i) = 4.1 nM) and 19 (K(i) = 1.8 nM), both encompassing 14-membered ring systems connected to AMPAA, are 10-fold more potent than Ang IV and are also more selective over aminopeptidase N (AP-N). Both compounds displayed high stability against proteolysis by metallopeptidases.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Desenho de Fármacos , Lactamas/síntese química , Lactamas/farmacologia , Nootrópicos/síntese química , Nootrópicos/farmacologia , Fenilacetatos/síntese química , Fenilacetatos/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Alcenos/química , Angiotensina II/análogos & derivados , Angiotensina II/química , Animais , Células CHO , Cricetinae , Cricetulus , Cistinil Aminopeptidase/metabolismo , Estabilidade de Medicamentos , Lactamas/química , Nootrópicos/química , Fenilacetatos/química , Inibidores de Proteases/química , Relação Estrutura-Atividade
17.
Br J Pharmacol ; 164(1): 37-47, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21470200

RESUMO

Two structurally distinct peptides, angiotensin IV and LVV-haemorphin 7, both competitive high-affinity inhibitors of insulin-regulated aminopeptidase (IRAP), were found to enhance aversion-associated and spatial memory in normal rats and to improve performance in a number of memory tasks in rat deficits models. These findings provide compelling support for the development of specific, high-affinity inhibitors of the enzyme as new cognitive enhancing agents. Different classes of IRAP inhibitors have been developed including peptidomimetics and small molecular weight compounds identified through in silico screening with a homology model of the catalytic domain of IRAP. The proof of principal that inhibition of IRAP activity results in facilitation of memory has been obtained by the demonstration that the small-molecule IRAP inhibitors also exhibit memory-enhancing properties.


Assuntos
Cognição/efeitos dos fármacos , Cistinil Aminopeptidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nootrópicos/farmacologia , Animais , Cistinil Aminopeptidase/metabolismo , Inibidores Enzimáticos/química , Humanos , Nootrópicos/química
18.
J Pharm Pharmacol ; 63(4): 565-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21401609

RESUMO

OBJECTIVES: Angiotensin IV (Ang IV) is a metabolite of angiotensin II which acts on specific AT(4) receptors identified as the enzyme insulin regulated aminopeptidase (IRAP). The transduction process of these receptors is unresolved, but Ang IV inhibits the aminopeptidase activity. Ang IV improves cognition in animal models thus there is a desire to develop metabolically stable analogues for further development. METHODS: Peptide analogues of Ang IV were obtained commercially or synthesised. Each peptide was tested in vitro for its ability to inhibit the aminopeptidase activity (IRAP) of mouse brain homogenates and for its effects on isolated rat uterine smooth muscle. KEY FINDINGS: [Des-Val(1) ]-Ang IV, acetylated-Ang IV-amide, Ang IV-amide and [des-His(4) ]-Ang IV all inhibited IRAP. [Sar(1) , Ile(8) ]-Angiotensin II (10 µm) had an effect greater than that of Ang IV or any of the other analogues studied. In isolated uterine smooth muscle, angiotensins II and IV induced contractions, which could be antagonised by an AT(1) -receptor antagonist. None of the novel peptides induced uterine smooth muscle contractions, but [Sar(1) , des Arg(2) -Gly(8) ]-angiotensin II showed significant antagonism of the contractile effects of angiotensin II and carboxyamide-terminated Ang IV-NH(2) showed antagonism of Ang IV-induced contractions. CONCLUSIONS: This study provides five novel inhibitors of IRAP worthy of assessment in behavioural models of learning and memory. The analogues are devoid of AT(1) receptor agonist properties, and the carboxyamide analogue presents an opportunity to elucidate the mechanism of action of Ang IV as, like Ang IV, it inhibits IRAP, but antagonises the effects of Ang IV on isolated smooth muscle.


Assuntos
Angiotensina II/análogos & derivados , Antagonistas de Receptores de Angiotensina/farmacologia , Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina/síntese química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Cistinil Aminopeptidase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/agonistas , Útero/efeitos dos fármacos , Útero/fisiologia
19.
Biochemistry ; 50(13): 2611-22, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21348480

RESUMO

The development of inhibitors of insulin-regulated aminopeptidase (IRAP), a membrane-bound zinc metallopeptidase, is a promising approach for the discovery of drugs for the treatment of memory loss such as that associated with Alzheimer's disease. There is, however, no consensus in the literature about the mechanism by which inhibition occurs. Sequence alignments, secondary structure predictions, and homology models based on the structures of recently determined related metallopeptidases suggest that the extracellular region consists of four domains. Partial proteolysis and mass spectrometry reported here confirm some of the domain boundaries. We have produced purified recombinant fragments of human IRAP on the basis of these data and examined their kinetic and biochemical properties. Full-length extracellular constructs assemble as dimers with different nonoverlapping fragments dimerizing as well, suggesting an extended dimer interface. Only recombinant fragments containing domains 1 and 2 possess aminopeptidase activity and bind the radiolabeled hexapeptide inhibitor, angiotensin IV (Ang IV). However, fragments lacking domains 3 and 4 possess reduced activity, although they still bind a range of inhibitors with the same affinity as longer fragments. In the presence of Ang IV, IRAP is resistant to proteolysis, suggesting significant conformational changes occur upon binding of the inhibitor. We show that IRAP has a second Zn(2+) binding site, not associated with the catalytic region, which is lost upon binding Ang IV. Modulation of activity caused by domains 3 and 4 is consistent with a conformational change regulating access to the active site of IRAP.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Sítios de Ligação , Domínio Catalítico , Cistinil Aminopeptidase/genética , Cistinil Aminopeptidase/metabolismo , Bases de Dados de Proteínas , Humanos , Hidrólise , Cinética , Modelos Moleculares , Terapia de Alvo Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Zinco/metabolismo
20.
J Med Chem ; 53(22): 8059-71, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21047126

RESUMO

The insulin-regulated aminopeptidase (IRAP) localized in areas of the brain associated with memory and learning is emerging as a new promising therapeutic target for the treatment of memory dysfunctions. The angiotensin II metabolite angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) binds with high affinity to IRAP and inhibits this aminopeptidase (K(i) = 62.4 nM). Furthermore, Ang IV has been demonstrated to enhance cognition in animal models and is believed to play an important role in cognitive processes. It is herein reported that displacement of the C-terminal tripeptide His(4)-Pro(5)-Phe(6) with a phenylacetic acid functionality combined with a constrained macrocyclic system in the N-terminal affords potent IRAP inhibitors that are less peptidic in character than the hexapeptide Ang IV. Configurational analysis of three pairs of diastereomeric Ang IV analogues was performed using a combination of solution NMR spectroscopic methods, Monte Carlo conformational searches, and NAMFIS calculations. The compounds encompassing l-amino acids only (4, 8, and 12) showed significantly higher bioactivity compared to their lld-epimers (5, 9, and 13). The best inhibitors in the series, compounds 8 and 12, incorporating a 13- and 14-membered disulfide ring system, respectively, and both with a ß(3)-homotyrosine residue (ß(3)hTyr) replacing Tyr(2), exhibit K(i) values of 3.3 and 5.2 nM, respectively.


Assuntos
Angiotensina II/análogos & derivados , Cistinil Aminopeptidase/antagonistas & inibidores , Dissulfetos/síntese química , Oligopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Angiotensina II/síntese química , Angiotensina II/química , Angiotensina II/farmacologia , Animais , Linhagem Celular , Cricetinae , Cricetulus , Dissulfetos/química , Dissulfetos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Método de Monte Carlo , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...