Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Front Immunol ; 15: 1373224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633264

RESUMO

Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Cistinose , Nefropatias , Animais , Cistina/metabolismo , Cistinose/genética , Cistinose/metabolismo , Cistinose/patologia , Rim/patologia , Nefropatias/patologia , RNA Mensageiro , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Camundongos
2.
Exp Eye Res ; 226: 109338, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470430

RESUMO

Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.


Assuntos
Lesões da Córnea , Cisteamina , Cistinose , Epitélio Corneano , Animais , Coelhos , Cicatriz/metabolismo , Córnea/efeitos dos fármacos , Córnea/metabolismo , Doenças da Córnea/patologia , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Cisteamina/metabolismo , Cistinose/metabolismo , Cistinose/patologia , Epitélio Corneano/patologia , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Cicatrização/efeitos dos fármacos
3.
J Med Case Rep ; 16(1): 181, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513889

RESUMO

BACKGROUND: Cystinosis is an autosomal recessive disorder characterized by an accumulation of the amino acid cystine in lysosomes throughout the body. Cystinosis is an inherited disease resulting from the failure of lysosomal cystine transport. The responsible gene, Cystinosin, Lysosomal Cystine Transporter (CTNS), encodes the lysosomal cystine carrier cystinosin. CASE PRESENTATION: In this case report, we reviewed the genetic basis of cystinosis and investigated two Iranian cases affected by cystinosis, one of which revealed a rare mutation in the CTNS gene. Two patients, 9-year-old (patient A) and 11-year-old (patient B) symptomatic Iranian females with renal insufficiency, were diagnosed with cystinosis on the basis of their clinical features and laboratory tests. After genetic counseling, blood samples were obtained from the patients and their parents. Genomic Deoxyribonucleic Acid (DNA) was extracted from whole blood, and mutation analysis was performed using polymerase chain reaction and sequencing methods for all exons of the CTNS gene. At least 148 different pathogenic and deleterious mutations in the CTNS gene have been reported to date. Owing to our patient's prominent clinical features of cystinosis, we carried out a targeted search for mutations in the CTNS gene. CONCLUSIONS: This led us to confirm the existence of a homozygous DNA variation c.257_258deletionCT (p.Ser86PhefsTer38) in exon 6 of the gene in patient A and another homozygous DNA variation, c.323delA (p.Q108RfsTer10), in the same exon in patient B. As expected, the mentioned mutation existed in both her parents in a heterozygous state. Variations c.257_258delCT and c.323delA reported in three Iranian patients in the CTNS gene are frameshifts, and truncating mutations that affect product function result in relatively mild symptoms of cystinosis. The present finding confirms previous research and proves the importance of the association of this gene rare mutations with cystinosis. Since reported mutations are rare, their previous reports in Iranian patients indicate the high frequency of these mutations in our region.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Sistemas de Transporte de Aminoácidos Neutros/genética , Criança , Cistina/genética , Cistina/metabolismo , Cistinose/genética , Cistinose/metabolismo , Cistinose/patologia , DNA , Feminino , Humanos , Irã (Geográfico) , Mutação
4.
Hum Mol Genet ; 31(13): 2262-2278, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35137071

RESUMO

Recessive mutations in the CTNS gene encoding the lysosomal transporter cystinosin cause cystinosis, a lysosomal storage disease leading to kidney failure and multisystem manifestations. A Ctns knockout mouse model recapitulates features of cystinosis, but the delayed onset of kidney manifestations, phenotype variability and strain effects limit its use for mechanistic and drug development studies. To provide a better model for cystinosis, we generated a Ctns knockout rat model using CRISPR/Cas9 technology. The Ctns-/- rats display progressive cystine accumulation and crystal formation in multiple tissues including kidney, liver and thyroid. They show an early onset and progressive loss of urinary solutes, indicating generalized proximal tubule dysfunction, with development of typical swan-neck lesions, tubulointerstitial fibrosis and kidney failure, and decreased survival. The Ctns-/- rats also present crystals in the cornea, and bone and liver defects, as observed in patients. Mechanistically, the loss of cystinosin induces a phenotype switch associating abnormal proliferation and dedifferentiation, loss of apical receptors and transporters, and defective lysosomal activity and autophagy in the cells. Primary cultures of proximal tubule cells derived from the Ctns-/- rat kidneys confirmed the key changes caused by cystine overload, including reduced endocytic uptake, increased proliferation and defective lysosomal dynamics and autophagy. The novel Ctns-/- rat model and derived proximal tubule cell system provide invaluable tools to investigate the pathogenesis of cystinosis and to accelerate drug discovery.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Síndrome de Fanconi , Insuficiência Renal , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Autofagia/genética , Cistina , Cistinose/genética , Cistinose/patologia , Lisossomos/metabolismo , Camundongos , Ratos
5.
Cells ; 11(2)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053306

RESUMO

The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.


Assuntos
Cistinose/patologia , Cistinose/terapia , Inflamação/patologia , Inflamação/terapia , Nefropatias/patologia , Nefropatias/terapia , Animais , Autofagia , Humanos , Inflamassomos/metabolismo , Terapia de Alvo Molecular
6.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011732

RESUMO

Cystinosis Metabolic Bone Disease (CMBD) has emerged during the last decade as a well-recognized, long-term complication in patients suffering from infantile nephropathic cystinosis (INC), resulting in significant morbidity and impaired quality of life in teenagers and adults with INC. Its underlying pathophysiology is complex and multifactorial, associating complementary, albeit distinct entities, in addition to ordinary mineral and bone disorders observed in other types of chronic kidney disease. Amongst these long-term consequences are renal Fanconi syndrome, hypophosphatemic rickets, malnutrition, hormonal abnormalities, muscular impairment, and intrinsic cellular bone defects in bone cells, due to CTNS mutations. Recent research data in the field have demonstrated abnormal mineral regulation, intrinsic bone defects, cysteamine toxicity, muscle wasting and, likely interleukin-1-driven inflammation in the setting of CMBD. Here we summarize these new pathophysiological deregulations and discuss the crucial interplay between bone and muscle in INC. In future, vitamin D and/or biotherapies targeting the IL1ß pathway may improve muscle wasting and subsequently CMBD, but this remains to be proven.


Assuntos
Osso e Ossos/patologia , Cistinose/patologia , Músculos/patologia , Adipócitos/patologia , Biomarcadores/sangue , Cistinose/sangue , Humanos , Minerais/metabolismo
7.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011739

RESUMO

Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures.


Assuntos
Bioengenharia , Cistinose/patologia , Túbulos Renais Proximais/patologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Autofagia , Biomarcadores/metabolismo , Linhagem Celular , Cistina/metabolismo , Células Epiteliais/patologia , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Inulina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Membranas Artificiais , Metabolômica , Fenótipo , Análise de Componente Principal , Serina-Treonina Quinases TOR/metabolismo
8.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943781

RESUMO

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal accumulation of cystine, a dimer of cysteine, in all the cells of the body leading to multi-organ failure, including the failure of the kidney, eye, thyroid, muscle, and pancreas, and eventually causing premature death in early adulthood. The current treatment is the drug cysteamine, which is onerous and expensive, and only delays the progression of the disease. Employing the mouse model of cystinosis, using Ctns-/- mice, we first showed that the transplantation of syngeneic wild-type murine hematopoietic stem and progenitor cells (HSPCs) led to abundant tissue integration of bone marrow-derived cells, a significant decrease in tissue cystine accumulation, and long-term kidney, eye and thyroid preservation. To translate this result to a potential human therapeutic treatment, given the risks of mortality and morbidity associated with allogeneic HSPC transplantation, we developed an autologous transplantation approach of HSPCs modified ex vivo using a self-inactivated lentiviral vector to introduce a functional version of the CTNS cDNA, pCCL-CTNS, and showed its efficacy in Ctns-/- mice. Based on these promising results, we held a pre-IND meeting with the Food and Drug Administration (FDA) to carry out the FDA agreed-upon pharmacological and toxicological studies for our therapeutic candidate, manufacturing development, production of the GMP lentiviral vector, design Phase 1/2 of the clinical trial, and filing of an IND application. Our IND was cleared by the FDA on 19 December 2018, to proceed to the clinical trial using CD34+ HSPCs from the G-CSF/plerixafor-mobilized peripheral blood stem cells of patients with cystinosis, modified by ex vivo transduction using the pCCL-CTNS vector (investigational product name: CTNS-RD-04). The clinical trial evaluated the safety and efficacy of CTNS-RD-04 and takes place at the University of California, San Diego (UCSD) and will include up to six patients affected with cystinosis. Following leukapheresis and cell manufacturing, the subjects undergo myeloablation before HSPC infusion. Patients also undergo comprehensive assessments before and after treatment to evaluate the impact of CTNS-RD-04 on the clinical outcomes and cystine and cystine crystal levels in the blood and tissues for 2 years. If successful, this treatment could be a one-time therapy that may eliminate or reduce renal deterioration as well as the long-term complications associated with cystinosis. In this review, we will describe the long path from bench-to-bedside for autologous HSPC gene therapy used to treat cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/terapia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Animais , Cistinose/genética , Cistinose/patologia , Humanos , Rim/metabolismo , Rim/patologia , Lisossomos/genética , Transplante Homólogo
9.
Cells ; 10(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943802

RESUMO

Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. At the cellular level, several alterations have been demonstrated, including enhanced apoptosis, altered autophagy, defective intracellular trafficking, and cell oxidation, among others. Current therapy with cysteamine only partially reverts some of these changes, highlighting the need to develop additional treatments. Among compounds that were identified in a previous drug-repositioning study, disulfiram (DSF) was selected for in vivo studies. The cystine depleting and anti-apoptotic properties of DSF were confirmed by secondary in vitro assays and after treating Ctns-/- mice with 200 mg/kg/day of DSF for 3 months. However, at this dosage, growth impairment was observed. Long-term treatment with a lower dose (100 mg/kg/day) did not inhibit growth, but failed to reduce cystine accumulation, caused premature death, and did not prevent the development of renal lesions. In addition, DSF also caused adverse effects in cystinotic zebrafish larvae. DSF toxicity was significantly more pronounced in Ctns-/- mice and zebrafish compared to wild-type animals, suggesting higher cell toxicity of DSF in cystinotic cells.


Assuntos
Cistinose/patologia , Dissulfiram/toxicidade , Nefropatias/patologia , Testes de Toxicidade , Acetilcisteína/farmacologia , Animais , Apoptose , Cistina/metabolismo , Cistinose/urina , Modelos Animais de Doenças , Dissulfetos/metabolismo , Dissulfiram/química , Embrião não Mamífero/metabolismo , Humanos , Nefropatias/urina , Larva/metabolismo , Camundongos Knockout , Peixe-Zebra/embriologia
10.
Cells ; 10(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34944047

RESUMO

Cystinosis is a rare inheritable lysosomal storage disorder characterized by cystine accumulation throughout the body, chronic kidney disease necessitating renal replacement therapy mostly during adolescence, and multiple extra-renal complications. The majority of male cystinosis patients are infertile due to azoospermia, in contrast to female patients who are fertile. Over recent decades, the fertility status of male patients has evolved from a primary hypogonadism in the era before the systematic treatment with cysteamine to azoospermia in the majority of cysteamine-treated infantile cystinosis patients. In this review, we provide a state-of-the-art overview on the available clinical, histopathological, animal, and in vitro data. We summarize current insights on both cystinosis males and females, and their clinical implications including the potential effect of cysteamine on fertility. In addition, we identify the remaining challenges and areas for future research.


Assuntos
Cistinose/patologia , Fertilidade , Animais , Biomarcadores/sangue , Cisteamina/metabolismo , Cistinose/sangue , Modelos Animais de Doenças , Humanos , Modelos Biológicos
11.
J Inherit Metab Dis ; 44(6): 1393-1408, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494673

RESUMO

Cystinosis is an inherited metabolic disorder caused by autosomal recessive mutations in the CTNS gene leading to lysosomal cystine accumulation. The disease primarily affects the kidneys followed by extra-renal organ involvement later in life. Azoospermia is one of the unclarified complications which are not improved by cysteamine, which is the only available disease-modifying treatment. We aimed at unraveling the origin of azoospermia in cysteamine-treated cystinosis by confirming or excluding an obstructive factor, and investigating the effect of cysteamine on fertility in the Ctns-/- mouse model compared with wild type. Azoospermia was present in the vast majority of infantile type cystinosis patients. While spermatogenesis was intact, an enlarged caput epididymis and reduced levels of seminal markers for obstruction neutral α-glucosidase (NAG) and extracellular matrix protein 1 (ECM1) pointed towards an epididymal obstruction. Histopathological examination in human and mouse testis revealed a disturbed blood-testis barrier characterized by an altered zonula occludens-1 (ZO-1) protein expression. Animal studies ruled out a negative effect of cysteamine on fertility, but showed that cystine accumulation in the testis is irresponsive to regular cysteamine treatment. We conclude that the azoospermia in infantile cystinosis is due to an obstruction related to epididymal dysfunction, irrespective of the severity of an evolving primary hypogonadism. Regular cysteamine treatment does not affect fertility but has subtherapeutic effects on cystine accumulation in testis.


Assuntos
Azoospermia/patologia , Barreira Hematotesticular/metabolismo , Cisteamina/uso terapêutico , Cistinose/tratamento farmacológico , Testículo/patologia , Adulto , Animais , Azoospermia/complicações , Azoospermia/genética , Eliminadores de Cistina/uso terapêutico , Cistinose/complicações , Cistinose/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Estudos Retrospectivos , Adulto Jovem , Proteína da Zônula de Oclusão-1/metabolismo
12.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502306

RESUMO

Cystinosis is a rare, incurable, autosomal recessive disease caused by mutations in the CTNS gene. This gene encodes the lysosomal cystine transporter cystinosin, leading to lysosomal cystine accumulation in all cells of the body, with kidneys being the first affected organs. The current treatment with cysteamine decreases cystine accumulation, but does not reverse the proximal tubular dysfunction, glomerular injury or loss of renal function. In our previous study, we have developed a zebrafish model of cystinosis through a nonsense mutation in the CTNS gene and have shown that zebrafish larvae recapitulate the kidney phenotype described in humans. In the current study, we characterized the adult cystinosis zebrafish model and evaluated the long-term effects of the disease on kidney and extra renal organs through biochemical, histological, fertility and locomotor activity studies. We found that the adult cystinosis zebrafish presents cystine accumulation in various organs, altered kidney morphology, impaired skin pigmentation, decreased fertility, altered locomotor activity and ocular anomalies. Overall, our data indicate that the adult cystinosis zebrafish model reproduces several human phenotypes of cystinosis and may be useful for studying pathophysiology and long-term effects of novel therapies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistina/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Rim/patologia , Mutação , Proteínas de Peixe-Zebra/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Cistinose/etiologia , Humanos , Rim/metabolismo , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Cells ; 10(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34440723

RESUMO

Mice lacking the functional cystinosin gene (Ctns-/-), a model of infantile nephropathic cystinosis (INC), exhibit the cachexia phenotype with adipose tissue browning and muscle wasting. Elevated leptin signaling is an important cause of chronic kidney disease-associated cachexia. The pegylated leptin receptor antagonist (PLA) binds to but does not activate the leptin receptor. We tested the efficacy of this PLA in Ctns-/- mice. We treated 12-month-old Ctns-/- mice and control mice with PLA (7 mg/kg/day, IP) or saline as a vehicle for 28 days. PLA normalized food intake and weight gain, increased fat and lean mass, decreased metabolic rate and improved muscle function. It also attenuated perturbations of energy homeostasis in adipose tissue and muscle in Ctns-/- mice. PLA attenuated adipose tissue browning in Ctns-/- mice. PLA increased gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correcting the increased expression of muscle wasting signaling while promoting the decreased expression of myogenesis in gastrocnemius of Ctns-/- mice. PLA attenuated aberrant expressed muscle genes that have been associated with muscle atrophy, increased energy expenditure and lipolysis in Ctns-/- mice. Leptin antagonism may represent a viable therapeutic strategy for adipose tissue browning and muscle wasting in INC.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Caquexia/prevenção & controle , Cistinose/tratamento farmacológico , Antagonistas de Hormônios/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Receptores para Leptina/antagonistas & inibidores , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Cistinose/complicações , Cistinose/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Receptores para Leptina/metabolismo , Transdução de Sinais
14.
J Cachexia Sarcopenia Muscle ; 12(5): 1296-1311, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34196133

RESUMO

BACKGROUND: Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns-/- mice. METHODS: We generated Ctns-/- Il1ß-/- mice, and we treated Ctns-/- and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns-/- mice. RESULTS: Skeletal muscle expression of IL-1ß was significantly elevated in Ctns-/- mice relative to wild-type control mice. Cachexia was completely normalized in Ctns-/- Il1ß-/- mice relative to Ctns-/- mice. We showed that anakinra attenuated the cachexia phenotype in Ctns-/- mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns-/- mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns-/- mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65 and mRNA expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns-/- mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns-/- mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns-/- mice. CONCLUSIONS: Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.


Assuntos
Cistinose , Atrofia Muscular , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Cistinose/patologia , Humanos , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia
15.
Trends Mol Med ; 27(7): 673-686, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975805

RESUMO

Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/terapia , Terapia Genética/métodos , Mutação , Bibliotecas de Moléculas Pequenas/uso terapêutico , Cistinose/genética , Cistinose/patologia , Humanos
16.
Nefrología (Madrid) ; 41(2): 182-190, mar.-abr. 2021. tab
Artigo em Espanhol | IBECS | ID: ibc-201571

RESUMO

ANTECEDENTES Y OBJETIVO: Las tubulopatías primarias son raras y se presentan habitualmente en la edad pediátrica. Avances recientes en diagnóstico genético y tratamiento han cambiado su historia natural. Este estudio presenta el espectro clínico de una serie de tubulopatías primarias diagnosticadas en una Unidad de Nefrología Pediátrica y ofrece datos de seguimiento a largo plazo sobre crecimiento, filtrado glomerular estimado y complicaciones intercurrentes. PACIENTES Y MÉTODOS: Estudio observacional en 53 pacientes con tubulopatías primarias y defecto genético identificado: síndrome de Gitelman (36%), acidosis tubular renal distal (15%), cistinuria (11%), raquitismo hipofosfatémico ligado al X (7%), síndrome de Dent-Lowe (7%), cistinosis (6%), y uno o 2 casos de otras tubulopatías. Se recogieron datos demográficos, analíticos y clínicos al diagnóstico, durante la evolución y en el momento del estudio. RESULTADOS: La edad (mediana y rango intercuartílico) al diagnóstico fue de 5,08 años (1,33-8,50). Las manifestaciones de presentación más frecuentes fueron descompensaciones metabólicas asociadas a procesos intercurrentes (40%) y talla baja (38%). La talla (media ± DE) fue de -1,39 ± 1,49 al diagnóstico y 1,07 ± 1,54 tras un seguimiento de 18,92 (6,25-24,33) años. Dieciséis (32%) desarrollaron filtrado glomerular estimado < 90 mL/min/1,73 m2. Tres pacientes requirieron reemplazo renal sustitutivo. Once enfermos tuvieron descompensaciones metabólicas que requirieron hospitalización, 9 cólicos nefríticos y/o cálculos renales y 10 problemas mentales. Seis de 8 pacientes con acidosis tubular renal desarrollaron sordera neurosensorial. CONCLUSIONES: Las tubulopatías primarias son un grupo heterogéneo de enfermedades que ocasionan afectación del crecimiento, reversible en gran medida con tratamiento, riesgo de reducción de filtrado glomerular estimado e importantes complicaciones extrarrenales derivadas o asociadas


BACKGROUND AND OBJECTIVE: Primary tubulopathies are rare and usually present at pediatric age. Recent advances in genetic diagnosis and treatment have changed its natural history. This study provides the clinical spectrum of a series of primary tubulopathies diagnosed in a Pediatric Nephrology Unit and to offer long-term follow-up data regarding growth, estimated glomerular filtration and intercurrent complications. PATIENTS AND METHODS: Observational study in 53 patients with primary tubulopathies and identified genetic defect: Gitelman syndrome (36%), distal renal tubular acidosis (15%), cystinuria (11%), X-linked hypophosphatemic rickets (7%), Dent-syndrome Lowe (7%), cystinosis (6%), and 1-2 cases of other tubulopathies. Demographic, analytical and clinical data were collected at diagnosis, during evolution and at the time of the study. RESULTS: The age (median and interquartile range) at diagnosis was 5.08 years (1.33-8.50). The most frequent presentation manifestations were metabolic decompensations associated with intercurrent processes (40%) and short stature (38%). Height (mean±SD) was - 1.39 ± 1.49 at diagnosis and 1.07 ± 1.54 after a follow-up of 18.92 (6.25-24.33) years. Sixteen (32%) developed an estimated glomerular filtration < 90 ml / min / 1.73 m2. Three patients required replacement renal replacement. Eleven patients had metabolic decompensations that required hospitalization, 9 renal colic and / or kidney stones and 10 mental problems. Six of 8 patients with distal renal tubular acidosis developed sensorineural deafness. CONCLUSIONS: Primary tubulopathies are a heterogeneous group of diseases that cause growth impairment, largely reversible with treatment, risk of estimated glomerular filtration reduction and significant extrarenal complications derived or associated


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Erros Inatos do Transporte Tubular Renal/patologia , Progressão da Doença , Erros Inatos do Transporte Tubular Renal/fisiopatologia , Estudos Longitudinais , Seguimentos , Cistinose/patologia , Cistinose/fisiopatologia , Taxa de Filtração Glomerular/fisiologia
17.
PLoS One ; 16(3): e0247846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661986

RESUMO

IMPORTANCE: Development of noninvasive methodology to reproducibly measure tissue cystine crystal load to assess disease status and guide clinical care in cystinosis, an inherited lysosomal storage disorder characterized by widespread cystine crystal accumulation. OBJECTIVE: To develop an unbiased and semi-automated imaging methodology to quantify dermal cystine crystal accumulation in patients to correlate with disease status. DESIGN, SETTING AND PARTICIPANTS: 101 participants, 70 patients and 31 healthy controls, were enrolled at the University of California, San Diego, Cystinosis Clinics, Rady Children's Hospital, San Diego and at the annual Cystinosis Research Foundation family conference for an ongoing prospective longitudinal cohort study of cystinosis patients with potential yearly follow-up. EXPOSURES: Intradermal reflectance confocal microscopy (RCM) imaging, blood collection via standard venipuncture, medical record collection, and occasional skin punch biopsies. MAIN OUTCOMES AND MEASURES: The primary outcome was to establish an automated measure of normalized confocal crystal volume (nCCV) for each subject. Secondary analysis examined the association of nCCV with various clinical indicators to assess nCCV's possible predictive potential. RESULTS: Over 2 years, 57 patients diagnosed with cystinosis (median [range] age: 15.1 yrs [0.8, 54]; 41.4% female) were intradermally assessed by RCM to produce 84 image stacks. 27 healthy individuals (38.7 yrs [10, 85]; 53.1% female) were also imaged providing 37 control image stacks. Automated 2D crystal area quantification revealed that patients had significantly elevated crystal accumulation within the superficial dermis. 3D volumetric analysis of this region was significantly higher in patients compared to healthy controls (mean [SD]: 1934.0 µm3 [1169.1] for patients vs. 363.1 µm3 [194.3] for controls, P<0.001). Medical outcome data was collected from 43 patients with infantile cystinosis (media [range] age: 11 yrs [0.8, 54]; 51% female). nCCV was positively associated with hypothyroidism (OR = 19.68, 95% CI: [1.60, 242.46], P = 0.02) and stage of chronic kidney disease (slope estimate = 0.53, 95%CI: [0.05, 1.00], P = 0.03). CONCLUSIONS AND RELEVANCE: This study used non-invasive RCM imaging to develop an intradermal cystine crystal quantification method. Results showed that cystinosis patients had increased nCCV compared to healthy controls. Level of patient nCCV correlated with several clinical outcomes suggesting nCCV may be used as a potential new biomarker for cystinosis to monitor long-term disease control and medication compliance.


Assuntos
Cistina/análise , Cistinose/diagnóstico por imagem , Derme/diagnóstico por imagem , Adolescente , Adulto , Criança , Cristalização , Cistinose/patologia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Adulto Jovem
18.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011573

RESUMO

The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.


Assuntos
Cistinose/patologia , Nefropatias/patologia , Animais , Cistinose/genética , Modelos Animais de Doenças , Humanos , Nefropatias/genética , Mutação/genética , Organoides/patologia , RNA Interferente Pequeno/metabolismo
19.
EBioMedicine ; 63: 103166, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341443

RESUMO

Lysosomal storage disorders (LSDs), which number over fifty, are monogenically inherited and caused by mutations in genes encoding proteins that are involved in lysosomal function. Lack of the functional protein results in storage of a distinctive material within the lysosomes, which for years was thought to determine the pathophysiology of the disorder. However, our current view posits that the primary storage material disrupts the normal role of the lysosome in the autophagic pathway resulting in the secondary storage of autophagic debris. It is this "collateral damage" which is common to the LSDs but nonetheless intricately nuanced in each. We have selected five LSDs resulting from defective proteins that govern widely different lysosomal functions including glycogen degradation (Pompe), lysosomal transport (Cystinosis), lysosomal trafficking (Danon), glycolipid degradation (Gaucher) and an unidentified function (Batten) and argue that despite the disparate functions, these proteins, when mutant, all impair the autophagic process uniquely.


Assuntos
Autofagia , Suscetibilidade a Doenças , Doenças por Armazenamento dos Lisossomos/etiologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Animais , Autofagia/genética , Biomarcadores , Cistinose/etiologia , Cistinose/metabolismo , Cistinose/patologia , Gerenciamento Clínico , Humanos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/terapia , Especificidade de Órgãos/genética
20.
BMC Med Genet ; 21(1): 240, 2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33308164

RESUMO

BACKGROUND: In Morocco, consanguinity rate is very high; which lead to an increase in the birth prevalence of infants with autosomal recessive disorders. Previously, it was difficult to diagnose rare autosomal recessive diseases. Next Generation Sequencing (NGS) techniques have considerably improved clinical diagnostics. A genetic diagnosis showing biallelic causative mutations is the requirement for targeted carrier testing in parents, prenatal and preimplantation genetic diagnosis in further pregnancies, and also for targeted premarital testing in future couples at risk of producing affected children by a known autosomal recessive disease. METHODS: In this report, we present our strategy to advise a future couple of first cousins, whose descendants would risk cystinosis; an autosomal recessive lysosomal disease caused by mutations in the CTNS gene. Indeed, our future husband's sister is clinically and biochemically diagnosed with cystinosis in early childhood. First, we opted to identify the patient's CTNS gene abnormality by using (NGS), then we searched for heterozygosity in the couple's DNA, which allows us to predict the exact risk of this familial disease in the future couple's offspring. RESULTS: We have shown that the future husband, brother of the patient is heterozygous for the familial mutation. On the other hand, his future wife did not inherit the familial mutation. Therefore, genetic counseling was reassuring for the risk of familial cystinosis in this couple's offspring. CONCLUSIONS: We report in this study, one of the major applications of (NGS), an effective tool to improve clinical diagnosis and to provide the possibility of targeted premarital carrier testing in couples at risk.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Consanguinidade , Cistinose/genética , Aconselhamento Genético , Mutação , Adulto , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Cistinose/diagnóstico , Cistinose/patologia , Feminino , Expressão Gênica , Testes Genéticos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Marrocos , Linhagem , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...