Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 19(7): 2234-2255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151878

RESUMO

In spermatozoa, the nuclear F-actin supports the acroplaxome, a subacrosomal structure involved in the correct exposure of several acrosomal membrane proteins; among them, the glycoprotein IZUMO1 is the major protein involved in sperm-oocyte fusion. Nuclear F-actin is also involved in sperm head shaping and chromosome compartmentalization. To date, few notions regarding the bivalent role of F-actin on sperm chromatin organization and IZUMO1 positioning have been reported. In our work, we characterized subcellular organization of F-actin in human high- and low-quality spermatozoa (A- and B-SPZ), respectively, showing that F-actin over-expression in sperm head of B-SPZ affected IZUMO1 localization. A correct IZUMO1 repositioning following in vitro induction of F-actin depolymerization, by cytochalasin D treatment, occurred. Interestingly, F-actin depolymerization was also associated with a correct acrosome repositioning, thus to favor a proper acrosome reaction onset, with changes in sperm nuclear size parameters and histone acetylation rate reaching high-quality conditions. In conclusion, the current work shows a key role of F-actin in the control of IZUMO1 localization as well as chromatin remodeling and acetylation events.


Assuntos
Actinas , Proteínas de Membrana , Masculino , Humanos , Actinas/metabolismo , Citocalasina D/farmacologia , Citocalasina D/análise , Citocalasina D/metabolismo , Proteínas de Membrana/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Imunoglobulinas/metabolismo
2.
Magn Reson Chem ; 57(8): 458-471, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993742

RESUMO

Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based 1 HNMR quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based 1 HNMR quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-1 HNMR quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.


Assuntos
Técnicas de Cultura de Células/métodos , Citocalasina D/metabolismo , Ácido Fusárico/biossíntese , Metabolômica/métodos , Nitrocompostos/metabolismo , Propionatos/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Citocalasina D/análise , Ácido Fusárico/análise , Nitrocompostos/análise , Propionatos/análise , Espectroscopia de Prótons por Ressonância Magnética
3.
Sci Rep ; 8(1): 5248, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588468

RESUMO

Ras signaling in response to environmental cues is critical for cellular morphogenesis in eukaryotes. This signaling is tightly regulated and its activation involves multiple players. Sometimes Ras signaling may be hyperactivated. In C. albicans, a human pathogenic fungus, we demonstrate that dynamics of hyperactivated Ras1 (Ras1G13V or Ras1 in Hsp90 deficient strains) can be reliably differentiated from that of normal Ras1 at (near) single molecule level using fluorescence correlation spectroscopy (FCS). Ras1 hyperactivation results in significantly slower dynamics due to actin polymerization. Activating actin polymerization by jasplakinolide can produce hyperactivated Ras1 dynamics. In a sterol-deficient hyperfilamentous GPI mutant of C. albicans too, Ras1 hyperactivation results from Hsp90 downregulation and causes actin polymerization. Hyperactivated Ras1 co-localizes with G-actin at the plasma membrane rather than with F-actin. Depolymerizing actin with cytochalasin D results in faster Ras1 dynamics in these and other strains that show Ras1 hyperactivation. Further, ergosterol does not influence Ras1 dynamics.


Assuntos
Candida albicans/metabolismo , Candidíase/microbiologia , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Actinas/análise , Actinas/metabolismo , Candida albicans/citologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Citocalasina D/análise , Citocalasina D/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP90/análise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Morfogênese , Regulação para Cima , Proteínas ras/análise , Proteínas ras/genética
4.
J Control Release ; 96(1): 113-21, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15063034

RESUMO

Dynamic Secondary Ion Mass Spectrometry (DSIMS) was used to study the release behavior of cytochalasin D, an actin polymerase inhibitor effective in the reduction of smooth muscle cell (SMC) proliferation, from a polymer-coated cardiovascular stent. High-performance liquid chromatography (HPLC) was used to determine the percentage of drug released as a function of time and showed the typical behavior of a drug-releasing system that is comprised of a core drug-polymer dispersion surrounded by a drug-free polymeric membrane: an initial burst of the drug followed by a gradual elution over time. DSIMS profiles, as a function of release time, indicated that depletion of the drug initially occurred only in the outer layers of the coating. As release progressed the DSIMS profile showed a gradual decrease of cytochalasin D with increasing depth. This study shows that DSIMS is a powerful tool for the determination of drug distributions in, and the release behavior from, thin polymer layers.


Assuntos
Procedimentos Cirúrgicos Cardiovasculares/instrumentação , Materiais Revestidos Biocompatíveis/análise , Polímeros/análise , Espectrometria de Massa de Íon Secundário/instrumentação , Espectrometria de Massa de Íon Secundário/métodos , Stents , Materiais Revestidos Biocompatíveis/química , Citocalasina D/análise , Citocalasina D/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...