Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 31(4): 384-392, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36446702

RESUMO

A dynamic field of study has emerged involving long-range electron transport by extracellular filaments in anaerobic bacteria, with Geobacter sulfurreducens being used as a model system. The interest in this topic stems from the potential uses of such systems in bioremediation, energy generation, and new bio-based nanotechnology for electronic devices. These conductive extracellular filaments were originally thought, based upon low-resolution observations of dried samples, to be type IV pili (T4P). However, the recently published atomic structure for the T4P from G. sulfurreducens, obtained by cryo-electron microscopy (cryo-EM), is incompatible with the numerous models that have been put forward for electron conduction. As with all high-resolution structures of T4P, the G. sulfurreducens T4P structure shows a partial melting of the α-helix that substantially impacts the aromatic residue positions such that they are incompatible with conductivity. Furthermore, new work using high-resolution cryo-EM shows that conductive filaments thought to be T4P are actually polymerized cytochromes, with stacked heme groups forming a continuous conductive wire, or extracellular DNA. Recent atomic structures of three different cytochrome filaments from G. sulfurreducens suggest that such polymers evolved independently on multiple occasions. The expectation is that such polymerized cytochromes may be found emanating from other anaerobic organisms.


Assuntos
Citocromos , Fímbrias Bacterianas , Geobacter , Nanofios , Nanofios/química , Nanofios/ultraestrutura , Transporte de Elétrons , Geobacter/química , Geobacter/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Citocromos/química , Citocromos/ultraestrutura , Microscopia Crioeletrônica
2.
Curr Opin Chem Biol ; 59: 193-201, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070100

RESUMO

Extracellular electron transfer via filamentous protein appendages called 'microbial nanowires' has long been studied in Geobacter and other bacteria because of their crucial role in globally-important environmental processes and their applications for bioenergy, biofuels, and bioelectronics. Thousands of papers thought these nanowires as pili without direct evidence. Here, we summarize recent discoveries that could help resolve two decades of confounding observations. Using cryo-electron microscopy with multimodal functional imaging and a suite of electrical, biochemical, and physiological studies, we find that rather than pili, nanowires are composed of cytochromes OmcS and OmcZ that transport electrons via seamless stacking of hemes over micrometers. We discuss the physiological need for two different nanowires and their potential applications for sensing, synthesis, and energy production.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos/metabolismo , Fímbrias Bacterianas/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/ultraestrutura , Citocromos/ultraestrutura , Transporte de Elétrons , Fímbrias Bacterianas/ultraestrutura , Geobacter/metabolismo , Geobacter/ultraestrutura , Bactérias Gram-Negativas/ultraestrutura , Modelos Moleculares , Nanofios/ultraestrutura
3.
Nature ; 526(7574): 531-5, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26375009

RESUMO

Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.


Assuntos
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Metano/metabolismo , Análise de Célula Única , Simbiose , Anaerobiose , Archaea/citologia , Citocromos/genética , Citocromos/metabolismo , Citocromos/ultraestrutura , Deltaproteobacteria/citologia , Difusão , Transporte de Elétrons , Genoma Arqueal/genética , Genoma Bacteriano/genética , Heme/metabolismo , Microbiota/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Sulfatos/metabolismo
4.
J Mol Biol ; 287(1): 117-26, 1999 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-10074411

RESUMO

Thin three-dimensional crystals of the cytochrome b6 f complex from the unicellular algae Chlamydomonas reinhardtii have been grown by BioBeads-mediated detergent removal from a mixture of protein and lipid solubilized in Hecameg. Frozen-hydrated crystals, exhibiting p22121 plane group symmetry, were studied by electron crystallography and a projection map at 9 A resolution was calculated. The crystals (unit cell dimensions of a=173.5 A, b=70.0 A and gamma=90.0 degrees) showed the presence of dimers, and within each monomer 14 domains of electron density were observed. The combination of the projection map obtained from ice-embedded crystals of cytochrome b6 f with a previous map obtained from negatively stained samples brings new insight in the organization of the complex. For example, it distinguishes some peaks and/or domains that are only extramembrane or transmembrane, and reveals the possible localization of single-stranded transmembrane alpha-helices (Pet subunits). Furthermore, the cross-correlation of our projection map from frozen hydrated samples with the atomic model of the transmembrane part of the cytochrome bc1 complex has allowed us to localize the cytochrome b6 at the dimer interface and to reveal structural differences between the two complexes.


Assuntos
Chlamydomonas reinhardtii , Grupo dos Citocromos b/ultraestrutura , Citocromos/ultraestrutura , Animais , Cristalografia , Complexo Citocromos b6f , Citocromos f , Transporte de Elétrons , Elétrons , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Fotossíntese
5.
J Biol Chem ; 270(5): 2053-60, 1995 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-7836433

RESUMO

The catalytic sector, F1, and the membrane sector, F0, of the mitochondrial ATP synthase complex are joined together by a 45-A-long stalk. Knowledge of the composition and structure of the stalk is crucial to investigating the mechanism of conformational energy transfer between F0 and F1. This paper reports on the near neighbor relationships of the stalk subunits with one another and with the subunits of F1 and F0, as revealed by cross-linking experiments. The preparations subjected to cross-linking were bovine heart submitochondrial particles (SMP) and F1-deficient SMP. The cross-linkers were three reagents of different chemical specificities and different lengths of cross-linking from zero to 10 A. Cross-linked products were identified after gel electrophoresis of the particles and immunoblotting with subunit-specific antibodies to the individual subunits alpha, beta, gamma, delta, OSCP, F6, A6L, a (subunit 6), b, c, and d. The results suggested that the two b subunits form the principal stem of the stalk to which OSCP, d, and F6 are bound independent of one another. Subunits b, OSCP, d, and F6 cross-linked to alpha and/or beta, but not to gamma or delta. The COOH-terminal half of A6L, which is extramembranous, cross-linked to d but not to any other stalk or F1 subunit. No cross-links of subunits a and c with any stalk or F1 subunits were detected. In F1-deficient SMP, cross-linked b+b and d+F6 dimers appeared, and the extent of cross-linking between b and OSCP diminished greatly. The addition of F1 to F1-deficient particles appeared to reverse these changes. Treatment of F1-deficient particles with trypsin rapidly hydrolyzed away OSCP and F6, fragmented b to membrane-bound 18-, 12-, and 8-9-kDa antigenic fragments, which cross-linked to d and/or with one another. Trypsin also removed the COOH-terminal part of A6L, but the remainder still cross-linked to subunit d. Models showing the near neighbor relationships of the stalk subunits with one another and with the alpha and beta subunits at a level near the proximal end (bottom) of F1 and at the membrane-matrix interface are presented.


Assuntos
Proteínas de Transporte , ATPases Translocadoras de Prótons/ultraestrutura , Partículas Submitocôndricas/enzimologia , Adenosina Trifosfatases/química , Animais , Bovinos , Reagentes de Ligações Cruzadas , Citocromos/ultraestrutura , Proteínas de Membrana/química , ATPases Mitocondriais Próton-Translocadoras , Peso Molecular , Complexos Multienzimáticos/química , ATPases Translocadoras de Prótons/química , Compostos de Sulfidrila/química , Tripsina/farmacologia
7.
J Biol Chem ; 264(13): 7135-40, 1989 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-2540176

RESUMO

Oxygenated and peroxy states of the cytochrome d complex of Escherichia coli have been proposed as intermediates in the reaction mechanism of this ubiquinol oxidase. In this report, several stable states of the purified enzyme were examined spectroscopically at room temperature. As purified, the cytochrome d complex exists in an oxygenated state characterized by an absorbance band at 650 nm. Removal of oxygen results in loss of absorbance at this wavelength, which is restored upon the return of oxygen. The presence of one oxygen molecule in the oxygenated state was quantified by measuring oxygen released when excess hydrogen peroxide was added to the oxygenated state by passage of argon generates a "partially reduced" state with an absorbance peak at 628 nm, apparently due to reduced cytochrome d. Addition of equimolar hydrogen peroxide to the fully oxidized state produces the peroxy state. This peroxy state is also formed upon addition of excess hydrogen peroxide to the oxygenated state via a stable intermediate termed "peroxy intermediate." It is likely that 1) the oxygenated state consists of one molecule of oxygen bound to reduced heme d, and 2) there are at least two stable states that have bound peroxide at room temperature, the peroxy state and a newly discovered peroxy intermediate.


Assuntos
Citocromos/metabolismo , Escherichia coli/enzimologia , Catalase/metabolismo , Membrana Celular/enzimologia , Grupo dos Citocromos d , Citocromos/ultraestrutura , Compostos Férricos , Ferricianetos , Compostos Ferrosos , Peróxido de Hidrogênio , Oxirredução , Oxigênio/metabolismo , Peroxidases/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...