Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.273
Filtrar
1.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662776

RESUMO

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Assuntos
Actinas , Adesão Celular , Proteínas de Drosophila , Drosophila melanogaster , Matriz Extracelular , Integrinas , Talina , Talina/metabolismo , Talina/genética , Animais , Adesão Celular/genética , Sítios de Ligação , Matriz Extracelular/metabolismo , Actinas/metabolismo , Actinas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Integrinas/genética , Mutação , Ligação Proteica , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto/metabolismo , Citoesqueleto/genética
2.
Proc Natl Acad Sci U S A ; 121(12): e2307250121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483990

RESUMO

Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.


Assuntos
Actinas , Fator de Resposta Sérica , Actinas/genética , Actinas/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Citoesqueleto/genética , Diferenciação Celular/genética
3.
PLoS Genet ; 20(2): e1011138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315730

RESUMO

The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Filamentos Intermediários , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Citoesqueleto/genética , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo
4.
PeerJ ; 11: e16074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744224

RESUMO

Background: The purpose of this study is to analyzed the involvement of chorein in microtubules organization of three types of malignant; rhabdomyosarcoma tumor cells (ZF), rhabdomyosarcoma cells (RH30), and rhabdomyosarcoma cells (RD). ZF are expressing high chorein levels. Previous studies revealed that chorein protein silencing in ZF tumor cells persuaded apoptotic response followed by cell death. In addition, in numerous malignant and non-malignant cells this protein regulates actin cytoskeleton structure and cellular signaling. However, the function of chorein protein in microtubular organization is yet to be established. Methods: In a current research study, we analyzed the involvement of chorein in microtubules organization by using three types of malignant rhabdomyosarcoma cells. We have applied confocal laser-scanning microscopy to analyze microtubules structure and RT-PCR to examine cytoskeletal gene transcription. Results: We report here that in rhabdomyosarcoma cells (RH30), chorein silencing induced disarrangement of microtubular network. This was documented by laser scanning microscopy and further quantified by FACS analysis. Interestingly and in agreement with previous reports, tubulin gene transcription in RH cells was unchanged upon silencing of chorein protein. Equally, confocal analysis showed minor disordered microtubules organization with evidently weakened staining in rhabdomyosarcoma cells (RD and ZF) after silencing of chorein protein. Conclusion: These results disclose that chorein silencing induces considerable structural disorganization of tubulin network in RH30 human rhabdomyosarcoma tumor cells. Additional studies are now needed to establish the role of chorein in regulating cytoskeleton architecture in tumor cells.


Assuntos
Rabdomiossarcoma , Tubulina (Proteína) , Proteínas de Transporte Vesicular , Humanos , Citoesqueleto de Actina , Citoesqueleto/genética , Microtúbulos , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Proteínas de Transporte Vesicular/genética
5.
PLoS Genet ; 19(8): e1010885, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603562

RESUMO

Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (ß tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.


Assuntos
Caenorhabditis elegans , Tubulina (Proteína) , Animais , Tubulina (Proteína)/genética , Caenorhabditis elegans/genética , RNA Mensageiro , Citoesqueleto/genética , Microtúbulos/genética , Neurônios
6.
Cells ; 12(12)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371135

RESUMO

Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the active zone for continuous and faithful signalling. In the present study we demonstrate with independent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)-alternative name Dmx-like 2 (DMXL2)-is localized to the synaptic ribbons of rod photoreceptor synapses in the mouse retina. In the brain, RC3α-containing complexes are known to interact with important components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins and the vesicular H+-ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmitter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone thus contributing to reliable synaptic communication.


Assuntos
Retina , Células Fotorreceptoras Retinianas Bastonetes , Sinapses , Vesículas Sinápticas , Animais , Camundongos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
7.
Am J Physiol Cell Physiol ; 324(6): C1223-C1235, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125775

RESUMO

Dilated cardiomyopathy caused by mutations in LMNA, encoding A-type lamins (i.e., LMNA cardiomyopathy), is characterized by a left ventricle enlargement and ultimately results in poor cardiac contractility associated with conduction defects. Despite current strategies to aggressively manage the symptoms, the disorder remains a common cause of sudden death and heart failure with decreased ejection fraction. Patient care includes cardioverter defibrillator implantation but the last therapeutic option remains cardiac transplantation. A-type lamins are intermediate filaments and are the main components of the nuclear lamina, a meshwork underlying the inner nuclear membrane, which plays an essential role in both maintaining the nuclear structure and organizing the cytoskeletal structures within the cell. Cytoskeletal proteins function as scaffold to resist external mechanical stress. An increasing amount of evidence demonstrates that LMNA mutations can lead to disturbances in several structural and cytoskeletal components of the cell such as microtubules, actin cytoskeleton, and intermediate filaments. Collectively, this review focuses on the significance of these cytoskeletal modulators and emphasizes their potential therapeutic role in LMNA cardiomyopathy. Indeed, molecular tuning of cytoskeletal dynamics has been successfully used in preclinical models and provides adequate grounds for a therapeutic approach for patients with LMNA cardiomyopathy.


Assuntos
Cardiomiopatias , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/terapia , Cardiomiopatias/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Mutação/genética
8.
Int J Med Sci ; 20(6): 771-780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213676

RESUMO

The anatomical positions of pelvic floor organs are maintained by ligaments and muscles. Stress urinary incontinence (SUI) occurs when the pelvic floor tissues are repeatedly stimulated by excessive mechanical tension that exceeds the bearing capacity of ligaments or muscles. Besides, cells respond mechanically to mechanical stimulation by reconstituting the Piezo1 and cytoskeletal system. The aim of this study is to determine how Piezo1 and actin cytoskeleton are involved in the mechanized stretch (MS) induced apoptosis of human anterior vaginal wall fibroblasts (hAVWFs) and the mechanism. A four-point bending device was used to provide mechanical stretching to establish a cellular mechanical damage model. The apoptosis of hAVWFs cells in non-SUI patients was significantly increased by MS, which exhibited apoptosis rates comparable to those of SUI patients. Based on these findings, Piezo1 connects the actin cytoskeleton to the apoptosis of hAVWFs cells, providing an idea for the clinical diagnosis and treatment of SUI. However, the disassembly of the actin cytoskeleton suppressed the protective effect of Piezo1 silencing on MS. Based on these findings, Piezo1 connects the actin cytoskeleton to apoptosis of hAVWFs, providing new insight for the clinical diagnosis and treatment of SUI.


Assuntos
Citoesqueleto de Actina , Incontinência Urinária por Estresse , Feminino , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto/genética , Incontinência Urinária por Estresse/terapia , Fibroblastos , Apoptose/genética , Canais Iônicos/genética
9.
Dev Biol ; 498: 61-76, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015290

RESUMO

Cell division and cytoskeleton organization are fundamental processes participating in the development of Drosophila imaginal discs. In this manuscript we describe the phenotypes in the adult fly wing generated by knockdowns of 85% of Drosophila genes encoding proteins likely related to the regulation of cell division and cytoskeleton organization. We also compile a molecular classification of these proteins into classes that describe their expected or known main biochemical characteristics, as well as mRNA expression in the wing disc and likely protein subcellular localization for a subset of these genes. Finally, we analyze in more detail one protein family of cytoskeleton genes (Arp2/3 complex), and define the consequences of interfering with cell division for wing growth and patterning.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento/genética , Divisão Celular/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Asas de Animais , Drosophila melanogaster/metabolismo
10.
Medicine (Baltimore) ; 102(17): e33538, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37115085

RESUMO

BACKGROUND: A typical cancerous growth in the urinary tract, bladder cancer (BLCA) has a dismal survival rate and a poor chance of being cured. The cytoskeleton has been shown to be tightly related to tumor invasion and metastasis. Nevertheless, the expression of genes associated with the cytoskeleton and their prognostic significance in BLCA remain unknown. METHODS: In our study, we performed differential expression analysis of cytoskeleton-related genes between BLCA versus normal bladder tissues. According to the outcomes of this analysis of differentially expressed genes, all BLCA cases doing nonnegative matrix decomposition clustering analysis be classified into different molecular subtypes and were subjected to Immune cell infiltration analysis. We then constructed a cytoskeleton-associated gene prediction model for BLCA, and performed risk score independent prognostic analysis and receiver operating characteristic curve analyses to evaluate and validate the prognostic value of the model. Furthermore, enrichment analysis, clinical correlation analysis of prognostic models, and immune cell correlation analysis were carried out. RESULTS: We identified 546 differentially expressed genes that are linked to the cytoskeleton, including 314 up-regulated genes and 232 down-regulated genes. All BLCA cases doing nonnegative matrix decomposition clustering analysis could be classified into 2 molecular subtypes, and we observed differences (P < .05) in C1 and C2 immune scores about 9 cell types. Next, we obtained 129 significantly expressed cytoskeleton-related genes. A final optimized model was constructed consisting of 11 cytoskeleton-related genes. Survival curves and risk assessment predicted the prognostic risk in both groups of patients with BLCA. Survival curves and receiver operating characteristic curves were used to evaluate and validate the prognostic value of the model. Significant enrichment pathways for cytoskeleton-associated genes in bladder cancer samples were explored by Gene set enrichment analysis enrichment analysis. After we obtained the risk scores, a clinical correlation analysis was performed to examine which clinical traits were related to the risk scores. Finally, we demonstrated a correlation between different immune cells. CONCLUSION: Cytoskeleton-related genes have an important predictive value for BLCA, and the prognostic model we constructed may enable personalized treatment of BLCA.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária , Citoesqueleto/genética , Análise por Conglomerados
11.
Genes (Basel) ; 14(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36980836

RESUMO

Insulin-like androgenic gland hormone (IAG) is the master regulator of sexual differentiation and testis development in male crustaceans. However, the molecular mechanism on how IAG functions during testis development is still largely unknown. Here, the transcriptional changes were analyzed in the testes of shrimp after LvIAG knockdown in Litopenaeus vannamei. Differential expression analysis identified 111 differentially expressed genes (DEGs), including 48 upregulated DEGs and 63 downregulated DEGs, in testes of shrimp after LvIAG knockdown. Gene ontology (GO) analysis showed that these DEGs were apparently enriched in cytoskeleton-related GO items. Gene function analysis showed that genes enriched in these GO items mainly encoded actin, myosin, and heat shock protein. Interestingly, these genes were all downregulated in testis after LvIAG knockdown, which was confirmed by qRT-PCR detection. Furthermore, injection of LvIAG protein that was recombinantly expressed in insect cells upregulated the expression levels of these genes. The present study revealed that shrimp IAG might function in testis development through regulating the expression of cytoskeletal protein-encoding genes, which would provide new insights into understanding the functional mechanisms of IAG on male sexual development of crustaceans.


Assuntos
Androgênios , Testículo , Masculino , Humanos , Testículo/metabolismo , Androgênios/metabolismo , Diferenciação Sexual/genética , Desenvolvimento Sexual , Citoesqueleto/genética , Citoesqueleto/metabolismo
12.
BMC Genom Data ; 24(1): 4, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782118

RESUMO

Cytoskeleton-related proteins are essential for cell shape maintenance and cytoskeleton remodeling. The spermatozoa of Eriocheir sinensis (Chinese mitten crab) have a unique cellular structure, and the mechanism of spermatozoal metamorphosis during the acrosome reaction is not well understood. In this study, the E. sinensis spermatozoa were induced using calcium ionophore A23187 to undergo the acrosome reaction in vitro, and the acrosome-reacting and fresh (non-reacting) spermatozoa were collected separately. The differential expression of cytoskeleton-related protein genes in acrosome-reacting and fresh spermatozoa of E. sinensis was analyzed by whole transcriptome sequencing and bioinformatics analysis, and PPI network and miRNA-mRNA regulation network were constructed to analyze their possible function and regulation mechanism. The results showed that numerous differentially expressed cytoskeleton-related protein genes, miRNAs and lncRNAs were found in acrosome-reacting and fresh spermatozoa of E. sinensis; 27 cytoskeleton-related protein genes were down regulated and 687 miRNAs were up regulated in acrosome-reacting spermatozoa; 147 miRNAs target these 27 cytoskeleton-related protein genes. In the PPI networks, RAC1, BCAR1, RDX, NCKAP1, EPS8, CDC42BPA, LIMK1, ELMO2, GNAI1 and OCRL were identified as hub proteins. These proteins are mainly involved in the regulation of cytoskeleton organization, actin cytoskeleton organization, microtubule skeleton organization and small GTPase-mediated signal transduction and other biological processes, and play roles in pathways such as actin cytoskeletal regulation and axon guidance. miR-9, miR-31 and two novel miRNAs in the miRNA-mRNA regulatory network are the core miRNAs targeting cytoskeleton-related protein genes. miR-9 targets and regulates OBSCN, CDC42BPA, ELMO2, BCAS3, TPR and OCRL; while miR-31 targets and regulates CDC42BPA and TPR. This study provides a theoretical basis for revealing the mechanism of acrosome reaction under the special spermatozoa morphology of E. sinensis.


Assuntos
Reação Acrossômica , Braquiúros , Proteínas do Citoesqueleto , MicroRNAs , Espermatozoides , Masculino , Reação Acrossômica/genética , Reação Acrossômica/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/genética , MicroRNAs/genética , RNA Mensageiro/genética , Espermatozoides/metabolismo , Braquiúros/genética , Braquiúros/metabolismo
13.
Cancer Gene Ther ; 30(2): 375-387, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36357564

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in China. However, there are no targets to treat ESCC because the molecular mechanism behind the cancer is still unclear. Here, we found a novel long noncoding RNA LINC02820 was upregulated in ESCC and associated with the ESCC clinicopathological stage. Through a series of functional experiments, we observed that LINC02820 only promoted the migration and invasion capabilities of ESCC cell lines. Mechanically, we found that LINC02820 may affect the cytoskeletal remodeling, interact with splice factor 3B subunit 3 (SF3B3), and cooperate with TNFα to amplify the NF-κB signaling pathway, which can lead to ESCC metastasis. Overall, our findings revealed that LINC02820 is a potential biomarker and therapeutic target for the diagnosis and treatment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
14.
Hum Mol Genet ; 32(2): 177-191, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35925868

RESUMO

Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.


Assuntos
Laminopatias , Músculo Estriado , Animais , Camundongos , Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Membrana/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Matriz Nuclear/genética , Microtúbulos/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Músculo Estriado/metabolismo , Laminopatias/metabolismo
15.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552829

RESUMO

Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.


Assuntos
Citoesqueleto , Microtúbulos , Humanos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Matriz Nuclear , Mutação/genética
16.
Reprod Biol Endocrinol ; 20(1): 154, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329464

RESUMO

The importance of actin and microtubule (MT) cytoskeletons in testis function in rodents is known to some extent, but its role in the etiology of azoospermia in humans remains unexplored. Here, we examined if MT cytoskeleton was defective in NOA (non-obstructive azoospermia) testes versus normal human testes based on histopathological, immunofluorescence (IF), and scRNA-Seq transcriptome profiling. Testis biopsy samples from n = 6 normal men versus n = 3 Sertoli cell only (SCO) and n = 3 MA (meiotic arrest) of NOA patients were used for histopathological analysis. IF analysis was also used to examine MT organization across the seminiferous epithelium, investigating the likely involvement of microtubule-associated proteins (MAPs). scRNA-Seq transcriptome profiling datasets from testes of 3 SCO patients versus 3 normal men in public domain in Gene Expression Omnibus (GEO) Sample (GSM) with identifiers were analyzed to examine relevant genes that regulate MT dynamics. NOA testes of MA and SCO patients displayed notable defects in MT organization across the epithelium with extensive truncation, mis-alignments and appeared as collapsed structures near the base of the tubules. These changes are in contrast to MTs in testes of normal men. scRNA-Seq analyses revealed considerable loss of spermatogenesis capacity in SCO testes of NOA patients versus normal men. An array of genes that support MT dynamics displayed considerable changes in expression and in spatial distribution. In summary, defects in MT cytoskeleton were noted in testes of NOA (SCO) patients, possibly mediated by defective spatial expression and/or distribution of MAPs. These changes, in turn, may impede spermatogenesis in SCO testes of NOA patients.


Assuntos
Azoospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/patologia , Testículo/metabolismo , Espermatogênese/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Citoesqueleto/genética , Citoesqueleto/metabolismo
17.
Cell Rep Methods ; 2(9): 100278, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36160040

RESUMO

Numerous proteins experience and respond to mechanical forces as an integral part of their cellular functions, but measuring these forces remains a practical challenge. Here, we present a compact, 11-kDa molecular tension sensor termed STReTCh (sensing tension by reactive tag characterization). Unlike existing genetically encoded tension sensors, STReTCh does not rely on experimentally demanding measurements based on Förster resonance energy transfer and is compatible with typical fix-and-stain protocols. Using a magnetic tweezers assay, we calibrate the STReTCh module and show that it responds to physiologically relevant, piconewton forces. As proof of concept, we use an extracellular STReTCh-based sensor to visualize cell-generated forces at integrin-based adhesion complexes. In addition, we incorporate STReTCh into vinculin, a cytoskeletal adaptor protein, and show that STReTCh reports on forces transmitted between the cytoskeleton and cellular adhesion complexes. These data illustrate the utility of STReTCh as a tool for visualizing molecular-scale forces in biological systems.


Assuntos
Citoesqueleto , Fenômenos Mecânicos , Citoesqueleto/genética , Microtúbulos , Proteínas do Citoesqueleto/genética
18.
PLoS Genet ; 18(8): e1010348, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960773

RESUMO

Epithelial cells secrete apical extracellular matrices to form protruding structures such as denticles, ridges, scales, or teeth. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient assembly of longitudinal actomyosin filaments in the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.


Assuntos
Actinas , Caenorhabditis elegans , Actinas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Citoesqueleto/genética , Matriz Extracelular/metabolismo , Morfogênese
19.
J Reprod Immunol ; 153: 103666, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970081

RESUMO

Recurrent spontaneous abortion (RSA) is a disturbing pregnancy disorder experienced by ~2.5% of women attempting to conceive. The pathogenesis of RSA is still unclear. Previous findings revealed that transcription factor YIN-YANG 1(YY1) was related to the pathogenesis of RSA by influence trophoblastic cell invasion ability. Present study aimed to investigate more specific molecular mechanism of YY1 playing in trophoblastic cells. In our research, RNA-seq and Chip-seq were used to find significant changed genes between si-YY1(Knock down of YY1) HTR-8/SVneo cells(n = 3) and HTR-8/SVneo cells(n = 3). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results suggested that Integrins related pathway maybe necessary to biological functions of trophoblastic cells. Chip-seq dataset analysis results predict YY1 can regulate ITGA3/7 expression by binding to the promoter region of ITGA3/7. Furthermore, results from chip experiment, RT-PCR, Dual-luciferase reporter gene assay showed that YY1 was able to bind to the promoter region of ITGA3 and regulate ITGA3 mRNA and protein expression. However, ITGA7 could not be significant influenced by YY1. Besides, gene silencing experiment, Western blot and Immunofluorescence assay confirmed that both YY1 and ITGA3 can accelerate phosphorylation focal adhesion kinase and affect cytoskeleton formation in HTR-8/SVneo cells. In conclusion, YY1/ITGA3 play a critical role in trophoblast invasion ability by regulating cytoskeleton formation.


Assuntos
Aborto Habitual , Citoesqueleto , Integrina alfa3 , Trofoblastos , Fator de Transcrição YY1 , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Movimento Celular/genética , Proliferação de Células/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina alfa3/genética , Integrina alfa3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
20.
Sci Rep ; 12(1): 10157, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710716

RESUMO

The long non-coding RNA HOTAIR is the most differentially expressed gene between upper- and lower-body adipose tissue, yet its functional significance in adipogenesis is unclear. We report that HOTAIR expression is transiently induced during early adipogenic differentiation of gluteofemoral adipose progenitors and repressed in mature adipocytes. Upon adipogenic commitment, HOTAIR regulates protein synthesis pathways and cytoskeleton remodeling with a later impact on mature adipocyte lipid storage capacity. Our results support novel and important functions of HOTAIR in the physiological context of adipogenesis.


Assuntos
Adipogenia , RNA Longo não Codificante , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Citoesqueleto/genética , Lipídeos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...