Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 251: 112422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016326

RESUMO

Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.


Assuntos
Citoglobina , Isoformas de RNA , Humanos , Citoglobina/química , Citoglobina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
2.
Biochem Soc Trans ; 51(5): 1907-1919, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37721133

RESUMO

Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.


Assuntos
Neoplasias , Humanos , Citoglobina/química , Citoglobina/metabolismo , Oxirredução , Neoplasias/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930834

RESUMO

Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.


Assuntos
Citoglobina , Superóxido Dismutase , Animais , Linhagem Celular , Citoglobina/química , Citoglobina/genética , Citoglobina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
Clin Mol Hepatol ; 26(3): 280-293, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32492766

RESUMO

Cytoglobin (Cygb), a stellate cell-specific globin, has recently drawn attention due to its association with liver fibrosis. In the livers of both humans and rodents, Cygb is expressed only in stellate cells and can be utilized as a marker to distinguish stellate cells from hepatic fibroblast-derived myofibroblasts. Loss of Cygb accelerates liver fibrosis and cancer development in mouse models of chronic liver injury including diethylnitrosamine-induced hepatocellular carcinoma, bile duct ligation-induced cholestasis, thioacetamide-induced hepatic fibrosis, and choline-deficient L-amino acid-defined diet-induced non-alcoholic steatohepatitis. This review focuses on the history of research into the role of reactive oxygen species and nitrogen species in liver fibrosis and discusses the current perception of Cygb as a novel radical scavenger with an emphasis on its role in hepatic stellate cell activation and fibrosis.


Assuntos
Citoglobina/química , Sequestradores de Radicais Livres/química , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Animais , Citoglobina/metabolismo , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/uso terapêutico , Células Estreladas do Fígado/citologia , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 68(8): 806-809, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32461519

RESUMO

The direct electron transfer between human cytoglobin (Cygb) and the electrode surface, which would allow manipulating the oxidation states of the heme iron in Cygb, was first observed by immobilizing Cygb on a nanoporous gold (NPG) electrode via a carboxy-terminated alkanethiol. The voltammetric performances of the wild type and mutated Cygb-immobilized NPG electrodes were evaluated in the absence or presence of potential substrates. The obtained results demonstrated that the usefulness of the proposed method in understanding the function of Cygb in molecular basis.


Assuntos
Citoglobina/química , Técnicas Eletroquímicas/métodos , Citoglobina/genética , Citoglobina/metabolismo , Eletrodos , Transporte de Elétrons , Ouro/química , Humanos , Peróxido de Hidrogênio/química , Cinética , Mutagênese Sítio-Dirigida , Nanoporos , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
6.
Int J Mol Sci ; 21(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260401

RESUMO

Protein design is able to create artificial proteins with advanced functions, and computer simulation plays a key role in guiding the rational design. In the absence of structural evidence for cytoglobin (Cgb) with an intramolecular disulfide bond, we recently designed a de novo disulfide bond in myoglobin (Mb) based on structural alignment (i.e., V21C/V66C Mb double mutant). To provide deep insight into the regulation role of the Cys21-Cys66 disulfide bond, we herein perform molecular dynamics (MD) simulation of the fluoride-protein complex by using a fluoride ion as a probe, which reveals detailed interactions of the fluoride ion in the heme distal pocket, involving both the distal His64 and water molecules. Moreover, we determined the kinetic parameters of fluoride binding to the double mutant. The results agree with the MD simulation and show that the formation of the Cys21-Cys66 disulfide bond facilitates both fluoride binding to and dissociating from the heme iron. Therefore, the combination of theoretical and experimental studies provides valuable information for understanding the structure and function of heme proteins, as regulated by a disulfide bond. This study is thus able to guide the rational design of artificial proteins with tunable functions in the future.


Assuntos
Fluoretos/metabolismo , Mutação , Parvalbuminas/química , Parvalbuminas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citoglobina/química , Dissulfetos/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Parvalbuminas/genética , Ligação Proteica , Conformação Proteica
7.
Redox Biol ; 19: 1-10, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30081385

RESUMO

Many current anti-cancer therapies rely on increasing the intracellular reactive oxygen and nitrogen species (RONS) contents with the aim to induce irreparable damage, which subsequently results in tumor cell death. A novel tool in cancer therapy is the use of cold atmospheric plasma (CAP), which has been found to be very effective in the treatment of many different cancer cell types in vitro as well as in vivo, mainly through the vast generation of RONS. One of the key determinants of the cell's fate will be the interaction of RONS, generated by CAP, with important proteins, i.e. redox-regulatory proteins. One such protein is cytoglobin (CYGB), a recently discovered globin proposed to be involved in the protection of the cell against oxidative stress. In this study, the effect of plasma-produced RONS on CYGB was investigated through the treatment of CYGB with CAP for different treatment times. Spectroscopic analysis of CYGB showed that although chemical modifications occur, its secondary structure remains intact. Mass spectrometry experiments identified these modifications as oxidations of mainly sulfur-containing and aromatic amino acids. With longer treatment time, the treatment was also found to induce nitration of the heme. Furthermore, the two surface-exposed cysteine residues of CYGB were oxidized upon treatment, leading to the formation of intermolecular disulfide bridges, and potentially also intramolecular disulfide bridges. In addition, molecular dynamics and docking simulations confirmed, and further show, that the formation of an intramolecular disulfide bond, due to oxidative conditions, affects the CYGB 3D structure, thereby opening the access to the heme group, through gate functioning of His117. Altogether, the results obtained in this study (1) show that plasma-produced RONS can extensively oxidize proteins and (2) that the oxidation status of two redox-active cysteines lead to different conformations of CYGB.


Assuntos
Citoglobina/química , Citoglobina/metabolismo , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Oxirredução , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
Nitric Oxide ; 72: 16-23, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29128400

RESUMO

Globin-mediated nitric oxide (NO) dioxygenase and nitrite reductase activities have been proposed to serve protective functions within the cell by scavenging or generating NO respectively. Cytoglobin has rapid NO dioxygenase activity, similar to other globins, however, the apparent rates of nitrite reductase activity have been reported as slow or negligible. Here we report that the activity of cytoglobin nitrite reductase activity is strongly dependent on the oxidation state of the two surface-exposed cysteine residues. The formation of an intramolecular disulfide bond between cysteines C38 and C83 enhances the nitrite reductase activity by 50-fold over that of the monomer with free sulfhydryl or 140-fold over that of the dimer with intermolecular disulfide bonds. The NO dioxygenase reactivity of cytoglobin is very rapid with or without disulfide bond, however, binding of the distal histidine following dissociation of the nitrate are affected by the presence or absence of the disulfide bond. The nitrite reductase activity reported here for the monomer with intramolecular disulfide is much higher than of those previously reported for other mammalian globins, suggesting a plausible role for this biochemistry in controlling NO homeostasis the cell under oxidative and ischemic conditions.


Assuntos
Citoglobina/química , Citoglobina/metabolismo , Dissulfetos/metabolismo , Óxido Nítrico/metabolismo , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Heme/química , Heme/metabolismo , Humanos , Ferro/química , Ferro/metabolismo , Nitrito Redutases/metabolismo , Oxirredução , Oxigenases/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 321-6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30222300

RESUMO

Cytoglobin (Cygb), a recently discovered member of the vertebrate globin family, exhibits a traditional globin fold with a three-over-three α-helical sandwich. The interaction between copper(Ⅱ) ion (Cu2+) and Cygb has been investigated by UV-Vis, fluorescence, synchronous fluorescence and circular dichroism (CD) spectra. Results showed that the absorption intensity of Cygb at 280 nm increased and the intrinsic fluorescence of Cygb was quenched when Cu2+ was added. This fluorescence quenching of Cygb has been proven that it belongs to static quenching. The synchronous fluorescence spectra indicated that there were small changes about the microenvironment of tryptophan residues and tyrosine residues; furthermore, the binding site of Cu2+ is closer to tryptophan residues than tyrosine residues. No obvious change was observed about the secondary structure of Cygb with the addition of Cu2+ from the CD spectra.


Assuntos
Cobre/química , Citoglobina/química , Sítios de Ligação , Dicroísmo Circular , Humanos , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...