Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Nature ; 628(8009): 894-900, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600380

RESUMO

Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpinski triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.


Assuntos
Citrato (si)-Sintase , Evolução Molecular , Fractais , Multimerização Proteica , Synechococcus , Microscopia Crioeletrônica , Modelos Moleculares , Synechococcus/enzimologia , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/ultraestrutura
2.
Plant Mol Biol ; 111(4-5): 429-438, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36884198

RESUMO

Citrate synthase (CS) catalyzes the reaction that produces citrate and CoA from oxaloacetate and acetyl-CoA in the tricarboxylic acid (TCA) cycle. All TCA cycle enzymes are localized to the mitochondria in the model organism, the red alga Cyanidioschyzon merolae. The biochemical properties of CS have been studied in some eukaryotes, but the biochemical properties of CS in algae, including C. merolae, have not been studied. We then performed the biochemical analysis of CS from C. merolae mitochondria (CmCS4). The results showed that the kcat/Km of CmCS4 for oxaloacetate and acetyl-CoA were higher than those of the cyanobacteria, such as Synechocystis sp. PCC 6803, Microcystis aeruginosa PCC 7806 and Anabaena sp. PCC 7120. Monovalent and divalent cations inhibited CmCS4, and in the presence of KCl, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher in the presence of MgCl2, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher and kcat lower. However, in the presence of KCl and MgCl2, the kcat/Km of CmCS4 was higher than those of the three cyanobacteria species. The high catalytic efficiency of CmCS4 for oxaloacetate and acetyl-CoA may be a factor in the increased carbon flow into the TCA cycle in C. merolae.


Assuntos
Ácido Oxaloacético , Rodófitas , Citrato (si)-Sintase/química , Acetilcoenzima A , Oxaloacetatos
3.
Int J Biol Macromol ; 183: 213-221, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33910038

RESUMO

Citrate synthase (CS) catalyzes the formation of citrate and coenzyme A from acetyl-CoA and oxaloacetate. CS exists in two forms: type I and type II. We determined the citrate-bound crystal structure of type II CS from the Hymenobacter sp. PAMC 26554 bacterium (HyCS; isolated from Antarctic lichen). Citrate molecules bound to a cleft between the large and small domains of HyCS. Structural comparison of HyCS with other type II CSs revealed that type II CSs have a highly conserved flexible hinge region (residues G264-P265 in HyCS), enabling correct positioning of active site residues. Notably, the catalytic His266 residue of HyCS interacted with Trp262 in the inactive (unliganded open) state of other type II CSs, whereas the His266 residue moved to the active site via a small-domain swing motion, interacting with the bound citrate in the closed conformation of HyCS. However, type I CSs lack this tryptophan residue and face-to-edge interactions. Thus, type II CSs might have a unique domain-motion control mechanism enabling a tight allosteric regulation. An activity assay using a W262A mutant showed a Hill coefficient of 2.4; thus, the interaction between Trp262 and His266 was closely related to the positive cooperative ligand binding of type II CS.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Citrato (si)-Sintase/metabolismo , Ácido Cítrico/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteroidetes/genética , Sítios de Ligação , Domínio Catalítico , Citrato (si)-Sintase/química , Citrato (si)-Sintase/genética , Coenzima A/metabolismo , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Biochem Biophys Res Commun ; 533(4): 1352-1358, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33081971

RESUMO

The chaperone activity of α-crystallin is important for maintaining the transparency of the human lens. αB-crystallin (αBC) is a long-lived protein in the lens that accumulates chemical modifications during aging. The formation of advanced glycation end products (AGEs) through glycation is one such modification. αBC is a small heat shock protein that exhibits chaperone activity. We have previously shown that αBC-client protein complexes can undergo AGE-mediated interprotein cross-linking. Here, we demonstrate that short-term (1 h) exposure to elevated temperatures and methylglyoxal (MGO) during the chaperoning of client proteins by αBC promotes AGE-mediated interprotein cross-linking. Liquid chromatography/mass spectrometry (LC-MS/MS) analyses revealed the rapid formation of AGEs by MGO. Interestingly, we found that despite protein cross-linking, the chaperone activity of αBC increased during the transient elevation of temperature in the presence of MGO. Together, these results imply that transient and subtle elevation of temperature in the lens of the eye can promote protein cross-linking through AGEs, and if this phenomenon recurs over a period of many years, it could lead to early onset of presbyopia and age-related cataracts.


Assuntos
Produtos Finais de Glicação Avançada/química , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Catarata/metabolismo , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Reagentes de Ligações Cruzadas/química , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Presbiopia/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Temperatura , Cadeia B de alfa-Cristalina/genética
5.
Biochemistry ; 59(18): 1737-1746, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32216302

RESUMO

Although it is well-known that the environment of mitochondria is a densely packed network of macromolecules, the kinetics of the essential metabolic enzyme, citrate synthase, has been studied only under dilute conditions. To understand how this crowded environment impacts the behavior of citrate synthase, Michaelis-Menten kinetics were measured spectrophotometrically in the presence of synthetic crowders as a function of size, concentration, and identity. The largest factor contributing to crowding effects was the overlap concentration (c*), the concentration above which polymers begin to interact. The presence of the crowder dextran decreased the maximum rate of the reaction by ∼20% in the dilute regime (c*) regardless of polymer size. The disparate effects observed from different crowding agents of similar size also reveal the importance of transient interactions from crowding.


Assuntos
Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/química , Humanos , Cinética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares
6.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 109-115, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133996

RESUMO

Citrate synthase (CS) catalyzes the conversion of oxaloacetate and acetyl coenzyme A into citrate and coenzyme A in the mitochondrial tricarboxylic acid (TCA) cycle. In plants, mitochondrial metabolism, including the TCA cycle, occurs in interaction with photosynthetic metabolism. The controlled regulation of several enzymes in the TCA cycle, such as CS, is important in plants. Here, the first crystal structure of a plant mitochondrial CS, CSY4 from Arabidopsis thaliana (AtCSY4), has been determined. Structural comparison of AtCSY4 with mitochondrial CSs revealed a high level of similarity. Inhibition analysis showed a similar manner of inhibition as in mitochondrial CSs. The effect of oxidation on one of a pair of cysteine residues in AtCSY4 was speculated upon based on the folded structure.


Assuntos
Arabidopsis/química , Arabidopsis/enzimologia , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Citrato (si)-Sintase/genética , Cristalografia por Raios X/métodos , Mitocôndrias/genética , Estrutura Secundária de Proteína
7.
Orig Life Evol Biosph ; 50(1-2): 35-55, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981046

RESUMO

Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein cofactors acted as catalysts prior to the evolution of the protein enzymes with which they are now associated. We investigated the stability of acetyl coenzyme A (Acetyl Co-A, the group transfer cofactor in citric acid synthesis in the TCA cycle) under early Earth conditions, as well as whether Acetyl Co-A or its small molecule analogs thioacetate or acetate can catalyze the transfer of an acetyl group onto oxaloacetate in the absence of the citrate synthase enzyme. Several different temperatures, pH ranges, and compositions of aqueous environments were tested to simulate the Earth's early ocean and its possible components; the effect of these variables on oxaloacetate and cofactor chemistry were assessed under ambient and anoxic conditions. The cofactors tested are chemically stable under early Earth conditions, but none of the three compounds (Acetyl Co-A, thioacetate, or acetate) promoted synthesis of citric acid from oxaloacetate under the conditions tested. Oxaloacetate reacted with itself and/or decomposed to form a sequence of other products under ambient conditions, and under anoxic conditions was more stable; under ambient conditions the specific chemical pathways observed depended on the environmental conditions such as pH and presence/absence of bicarbonate or salt ions in early Earth ocean simulants. This work demonstrates the stability of these metabolic intermediates under anoxic conditions. However, even though free cofactors may be stable in a geological environmental setting, an enzyme or other mechanism to promote reaction specificity would likely be necessary for at least this particular reaction to proceed.


Assuntos
Acetatos/química , Acetilcoenzima A/química , Citrato (si)-Sintase/química , Ácido Oxaloacético/química , Compostos de Sulfidrila/química , Catálise , Planeta Terra
8.
FEMS Microbiol Lett ; 366(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755935

RESUMO

Citrate synthase (CS) is an important enzyme in energy conversion and material circulation, participating in many important biochemical processes. In the present study, CS from Microcystis aeruginosa PCC7806 (MaCS) was cloned and expressed in Escherichia coli Rosetta (DE3). The recombinant MaCS was purified and its enzymological properties were characterized. The results showed that MaCS formed dimers in native status. The optimum temperature and pH of MaCS was 30°C and 8.2, respectively. MaCS displayed relative high thermal stability. Treatment at 50°C for 20 min only decreased 11.30% activity of MaCS and the half-life of MaCS was approximately 35 min at 55°C. The kcat and Km of acetyl-CoA and oxaloacetic acid were 17.133 s-1 (kcat) and 11.62 µM (Km), 24.502 s-1 and 103.00 µM, respectively. MaCS activity was not drastically inhibited by monovalent ions and NADH but depressed by divalent ions and some small molecular compounds, especially Mg2+, Zn2+, Co2+ and DTT. Overall, these data contributed to further understanding of energy metabolism in cyanobacteria and also provided basic information for industrial application of CS.


Assuntos
Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Cianobactérias/enzimologia , Microcystis/enzimologia , Citrato (si)-Sintase/genética , Cianobactérias/genética , Estabilidade Enzimática/genética , Estabilidade Enzimática/fisiologia , Cinética , Microcystis/genética
9.
Phys Biol ; 17(1): 016002, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31220825

RESUMO

It has been suggested that structural rigidity is connected to thermostability, e.g. in enzymes from thermophilic microorganisms. We examine the importance of correctly handling salt bridges, and interactions which we term 'strong polars', when constructing the constraint network for global rigidity analysis in these systems. Through a comparison of rigidity in citrate synthases, we clarify the relationship between rigidity and thermostability. In particular, with our corrected handling of strong polar interactions, the difference in rigidity between mesophilic and thermophilic structures is detected more clearly than in previous studies. The increase in rigidity did not detract from the functional flexibility of the active site in all systems once their respective temperature range had been reached. We then examine the distribution of salt bridges in thermophiles that were previously unaccounted for in flexibility studies. We show that in hyperthermophiles these have stabilising roles in the active site; occuring in close proximity to key residues involved in catalysis and binding of the protein.


Assuntos
Archaea/enzimologia , Citrato (si)-Sintase/química , Extremófilos/enzimologia , Estabilidade Enzimática , Modelos Moleculares
10.
J Chem Theory Comput ; 15(8): 4687-4698, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31251056

RESUMO

Small-angle X-ray and small-angle neutron scattering (SAXS/SANS) provide unique structural information on biomolecules and their complexes in solution. SANS may provide multiple independent data sets by means of contrast variation experiments, that is, by measuring at different D2O concentrations and different perdeuteration conditions of the biomolecular complex. However, even the combined data from multiple SAXS/SANS sets is by far insufficient to define all degrees of freedom of a complex, leading to a significant risk of overfitting when refining biomolecular structures against SAXS/SANS data. Hence, to control against overfitting, the low-information SAXS/SANS data must be complemented by accurate physical models, and, if possible, refined models should be cross-validated against independent data not used during the refinement. We present a method for refining atomic biomolecular structures against multiple sets of SAXS and SANS data using all-atom molecular dynamics simulations. Using the protein citrate synthase and the protein/RNA complex Sxl-Unr-msl2 mRNA as test cases, we demonstrate how multiple SAXS and SANS sets may be used for refinement and cross-validation, thereby excluding overfitting during refinement. For the Sxl-Unr-msl2 complex, we find that perdeuteration of the Unr domain leads to a unique, slightly compacted conformation, whereas other perdeuteration conditions lead to similar solution conformations compared to the nondeuterated state. In line with our previous method for predicting SAXS curves, SANS curves were predicted with explicit-solvent calculations, taking atomic models for both the hydration layer and the excluded solvent into account, thereby avoiding the use of solvent-related fitting parameters and solvent-reduced neutron scattering lengths. We expect the method to be useful for deriving and validating solution structures of biomolecules and soft-matter complexes, and for critically assessing whether multiple SAXS and SANS sets are mutually compatible.


Assuntos
Simulação de Dinâmica Molecular , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Difração de Raios X , Animais , Citrato (si)-Sintase/química , Proteínas de Ligação a DNA/química , Drosophila , Proteínas de Drosophila/química , Difração de Nêutrons/métodos , RNA/química , Proteínas de Ligação a RNA/química , Suínos , Difração de Raios X/métodos
11.
Biol Chem ; 400(12): 1567-1581, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31141475

RESUMO

Aspergillus fumigatus is a ubiquitous fungus that is not only a problem in agriculture, but also in healthcare. Aspergillus fumigatus drug resistance is becoming more prominent which is mainly attributed to the widespread use of fungicides in agriculture. The fungi-specific 2-methylcitrate cycle is responsible for detoxifying propionyl-CoA, a toxic metabolite produced as the fungus breaks down proteins and amino acids. The enzyme responsible for this detoxification is 2-methylcitrate synthase (mcsA) and is a potential candidate for the design of new anti-fungals. However, mcsA is very similar in structure to human citrate synthase (hCS) and catalyzes the same reaction. Therefore, both enzymes were studied in parallel to provide foundations for design of mcsA-specific inhibitors. The first crystal structures of citrate synthase from humans and 2-methylcitrate synthase from A. fumigatus are reported. The determined structures capture various conformational states of the enzymes and several inhibitors were identified and characterized. Despite a significant homology, mcsA and hCS display pronounced differences in substrate specificity and cooperativity. Considering that the active sites of the enzymes are almost identical, the differences in reactions catalyzed by enzymes are caused by residues that are in the vicinity of the active site and influence conformational changes of the enzymes.


Assuntos
Aspergillus fumigatus/enzimologia , Citrato (si)-Sintase/metabolismo , Oxo-Ácido-Liases/metabolismo , Citrato (si)-Sintase/química , Humanos , Oxo-Ácido-Liases/química , Conformação Proteica , Especificidade por Substrato
12.
FEBS J ; 286(14): 2799-2808, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30974512

RESUMO

The citrate synthase (CS) catalyzes the first reaction of the tricarboxylic acid cycle, playing an important role in central metabolism. The acetylation of lysine residues in the Escherichia coli Type II CS has been identified at multiple sites by proteomic studies, but their effects remain unknown. In this study, we applied the genetic code expansion strategy to generate 10 site-specifically acetylated CS variants which have been identified in nature. Enzyme assays and kinetic analyses showed that lysine acetylation could decrease the overall CS enzyme activity, largely due to the acetylation of K295 which impaired the binding of acetyl-coenzyme A. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to explore the acetylation and deacetylation processes of the CS, which indicated that the CS could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase.


Assuntos
Citrato (si)-Sintase/metabolismo , Escherichia coli/enzimologia , Acetilação , Citrato (si)-Sintase/química , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo
13.
Biochem J ; 476(7): 1121-1135, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30898848

RESUMO

Late embryogenesis abundant (LEA) proteins comprise a diverse family whose members play a key role in abiotic stress tolerance. As intrinsically disordered proteins, LEA proteins are highly hydrophilic and inherently stress tolerant. They have been shown to stabilise multiple client proteins under a variety of stresses, but current hypotheses do not fully explain how such broad range stabilisation is achieved. Here, using neutron reflection and surface tension experiments, we examine in detail the mechanism by which model LEA proteins, AavLEA1 and ERD10, protect the enzyme citrate synthase (CS) from aggregation during freeze-thaw. We find that a major contributing factor to CS aggregation is the formation of air bubbles during the freeze-thaw process. This greatly increases the air-water interfacial area, which is known to be detrimental to folded protein stability. Both model LEA proteins preferentially adsorb to this interface and compete with CS, thereby reducing surface-induced aggregation. This novel surface activity provides a general mechanism by which diverse members of the LEA protein family might function to provide aggregation protection that is not specific to the client protein.


Assuntos
Crioprotetores/química , Proteínas Intrinsicamente Desordenadas/química , Adsorção , Ar , Animais , Proteínas de Arabidopsis/química , Fenômenos Biofísicos , Citrato (si)-Sintase/química , Congelamento , Proteínas de Helminto/química , Difração de Nêutrons , Agregados Proteicos , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Rabditídios/química , Espalhamento a Baixo Ângulo , Estresse Fisiológico , Suínos , Água
14.
Biotechnol Prog ; 35(3): e2799, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30828994

RESUMO

Itaconic acid, which is a promising organic acid in synthetic polymers and some base-material production, has been produced by Aspergillus terreus fermentation at a high cost. The recombinant Escherichia coli that contained the cadA gene from A. terreus can produce itaconic acid but with low yield. By introducing the protein-protein scaffold between citrate synthesis, aconitase, and cis-aconitase decarboxylase, 5.7 g/L of itaconic acid was produced, which is 3.8-fold higher than that obtained with the strain without scaffold. The optimum pH and temperature for itaconic acid production were 8.5 and 30°C, respectively. When the competing metabolic network was inactivated by knock-out mutation, the itaconic acid concentration further increased, to 6.57 g/L.


Assuntos
Aconitato Hidratase/genética , Carboxiliases/genética , Citrato (si)-Sintase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Succinatos/metabolismo , Aconitato Hidratase/química , Aconitato Hidratase/metabolismo , Aspergillus niger/enzimologia , Carboxiliases/química , Carboxiliases/metabolismo , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Engenharia Metabólica
15.
J Phys Chem B ; 123(9): 1998-2004, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30744380

RESUMO

Citrate synthase plays a fundamental role in the metabolic cycle of the cell. Its catalytic mechanism is complex involving the binding of two substrates that cause a domain movement. In this paper, we used classical molecular dynamics simulations and umbrella-sampling simulations to determine the potential of mean force along a reaction coordinate for the domain movement in ligand-free citrate synthase from pig ( Sus scrofa). The results show that, at 293 K, the closed-domain conformation has a ∼4 kb T higher energy than the open-domain conformation. In a simple two-state model, this difference means that the enzyme spends 98% of the time in the open-domain conformation ready to receive the substrate, oxaloacetate, rather than the closed-domain conformation where the binding site would be inaccessible to the substrate. Given that experimental evidence indicates that the binding of oxaloacetate induces at least partial closure, this would imply an induced-fit mechanism which we argue is applicable to all enzymes with a functional domain movement for reasons of catalytic efficiency. A barrier of 4 kb T gives an estimation of the mean first passage time in the range 1-10 µs.


Assuntos
Citrato (si)-Sintase/química , Animais , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Suínos , Termodinâmica
16.
PLoS One ; 14(2): e0212807, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794680

RESUMO

Metallosphaera sedula is a thermoacidophilic archaeon and has an incomplete TCA/glyoxylate cycle that is used for production of biosynthetic precursors of essential metabolites. Citrate synthase from M. sedula (MsCS) is an enzyme involved in the first step of the incomplete TCA/glyoxylate cycle by converting oxaloacetate and acetyl-CoA into citrate and coenzyme A. To elucidate the inhibition properties of MsCS, we determined its crystal structure at 1.7 Å resolution. Like other Type-I CS, MsCS functions as a dimer and each monomer consists of two distinct domains, a large domain and a small domain. The oxaloacetate binding site locates at the cleft between the two domains, and the active site was more closed upon binding of the oxaloacetate substrate than binding of the citrate product. Interestingly, the inhibition kinetic analysis showed that, unlike other Type-I CSs, MsCS is non-competitively inhibited by NADH. Finally, amino acids and structural comparison of MsCS with other Type-II CSs, which were reported to be non-competitively inhibited by NADH, revealed that MsCS has quite unique NADH binding mode for non-competitive inhibition.


Assuntos
Proteínas Arqueais , Citrato (si)-Sintase , Inibidores Enzimáticos/química , Multimerização Proteica , Sulfolobaceae/enzimologia , Proteínas Arqueais/antagonistas & inibidores , Proteínas Arqueais/química , Sítios de Ligação , Citrato (si)-Sintase/antagonistas & inibidores , Citrato (si)-Sintase/química , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Especificidade por Substrato
17.
Chembiochem ; 20(9): 1174-1182, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605257

RESUMO

In this study, we probed the inhibition of pig heart citrate synthase (E.C. 4.1.3.7) by synthesising seven analogues either designed to mimic the proposed enolate intermediate in this enzyme reaction or developed from historical inhibitors. The most potent inhibitor was fluorovinyl thioether 9 (Ki =4.3 µm), in which a fluorine replaces the oxygen atom of the enolate. A comparison of the potency of 9 with that of its non-fluorinated vinyl thioether analogue 10 (Ki =68.3 µm) revealed a clear "fluorine effect" favouring 9 by an order of magnitude. The dethia analogues of 9 and 10 proved to be poor inhibitors. A methyl sulfoxide analogue was a moderate inhibitor (Ki =11.1 µm), thus suggesting hydrogen bonding interactions in the enolate site. Finally, E and Z propenoate thioether isomers were explored as conformationally constrained carboxylates, but these were not inhibitors. All compounds were prepared by the synthesis of the appropriate pantetheinyl diol and then assembly of the coenzyme A structure according to a three-enzyme biotransformation protocol. A quantum mechanical study, modelling both inhibitors 9 and 10 into the active site indicated short CF⋅⋅⋅H contacts of ≈2.0 Å, consistent with fluorine making two stabilising hydrogen bonds, and mimicking an enolate rather than an enol intermediate. Computation also indicated that binding of 9 to citrate synthase increases the basicity of a key aspartic acid carboxylate, which becomes protonated.


Assuntos
Acetilcoenzima A/análogos & derivados , Citrato (si)-Sintase/antagonistas & inibidores , Inibidores Enzimáticos/química , Acetilcoenzima A/síntese química , Animais , Domínio Catalítico , Citrato (si)-Sintase/química , Inibidores Enzimáticos/síntese química , Ligação de Hidrogênio , Modelos Químicos , Teoria Quântica , Suínos
18.
Biochem Biophys Res Commun ; 509(3): 722-727, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30611567

RESUMO

Metallosphaera sedula is a thermoacidophilic archaeon that has carbon fixation ability using the 3-hydroxypropionate/4-hydroxybutyrate(3-HP/4-HB) cycle, and has an incomplete TCA cycle to produce necessary biosynthetic precursors. The citrate synthase from M. sedula (MsCS) is an enzyme involved in the first step of the incomplete TCA cycle, catalyzing the conversion of oxaloacetate and acetyl-CoA into citrate and coenzyme A. To investigate the molecular mechanism of MsCS, we determined its crystal structure at 1.8 Šresolution. As other known CSs, MsCS functions as a dimer, and each monomer consists of two domains, a large domain and a small domain. We also determined the structure of the complex with acetyl-CoA and revealed the acetyl-CoA binding mode of MsCS. Structural comparison of MsCS with another CS in complex with oxaloacetate enabled us to predict the oxaloacetate binding site. Moreover, we performed inhibitory kinetic analyses of MsCS, and showed that the protein is inhibited by citrate and ATP by competitive and non-competitive inhibition modes, respectively, but not by NADH. Based on these results, we suggest that MsCS belongs to the type-I CS with structural and biochemical properties similar to those of CSs involved in the conventional TCA cycle.


Assuntos
Proteínas Arqueais/química , Citrato (si)-Sintase/química , Sulfolobaceae/enzimologia , Acetilcoenzima A/metabolismo , Proteínas Arqueais/metabolismo , Domínio Catalítico , Citrato (si)-Sintase/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Conformação Proteica , Sulfolobaceae/química , Sulfolobaceae/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-30195088

RESUMO

The interaction between ocean warming, hypoxia and hypercapnia, suggested by climate projections, may push an organism earlier to the limits of its thermal tolerance window. In a previous study on juveniles of green abalone (Haliotis fulgens), combined exposure to hypoxia and hypercapnia during heat stress induced a lowered critical thermal maximum (CTmax), indicated by constrained oxygen consumption, muscular spams and loss of attachment. Thus, the present study investigated the cell physiology in foot muscle of H. fulgens juveniles exposed to acute warming (18 °C to 32 °C at +3 °C day-1) under hypoxia (50% air saturation) and hypercapnia (~1000 µatm PCO2), alone and in combination, to decipher the mechanisms leading to functional loss in this tissue. Under exposure to either hypoxia or hypercapnia, citrate synthase (CS) activity decreased with initial warming, in line with thermal compensation, but returned to control levels at 32 °C. The anaerobic enzymes lactate and tauropine dehydrogenase increased only under hypoxia at 32 °C. Under the combined treatment, CS overcame thermal compensation and remained stable overall, indicating active mitochondrial regulation under these conditions. Limited accumulation of anaerobic metabolites indicates unchanged mode of energy production. In all treatments, upregulation of Hsp70 mRNA was observed already at 30 °C. However, lack of evidence for Hsp70 protein accumulation provides only limited support to thermal denaturation of proteins. We conclude that under combined hypoxia and hypercapnia, metabolic depression allowed the H. fulgens musculature to retain an aerobic mode of metabolism in response to warming but may have contributed to functional loss.


Assuntos
Metabolismo Energético , Gastrópodes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Aquecimento Global , Resposta ao Choque Térmico , Modelos Biológicos , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Aquicultura , Dióxido de Carbono/intoxicação , Hipóxia Celular , Citrato (si)-Sintase/química , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Gastrópodes/classificação , Gastrópodes/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta/efeitos adversos , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , México , Músculos/fisiologia , Filogenia , Estabilidade Proteica , Distribuição Aleatória
20.
Appl Biochem Biotechnol ; 188(3): 569-584, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30552625

RESUMO

Citrate synthase (CS) and NADP-dependent isocitrate dehydrogenase (NADP-ICDH) have been considered as candidate enzymes to provide carbon skeletons for nitrogen assimilation, i.e., production of 2-oxoglutarate required by the glutamine synthetase/glutamate synthase cycle. The CS and NADP-ICDH cDNAs were encoded for polypeptides of 402 and 480 amino acids with an estimated molecular weight of 53.01 and 45 kDa and an isoelectric point of 9.08 and 5.98, respectively. Phylogenetic analysis of these proteins in wheat across kingdoms confirmed the close relationship with Aegilops tauschii and Hordeum vulgare. Further, their amino acid sequences were demonstrated to have some conserved motifs such as Mg2+ or Mn2 binding site, catalytic sites, NADP binding sites, and active sites. In-silico-identified genomic sequences for the three homeologues A, B, and Dof CS and NADP-ICDH were found to be located on long arm of chromosomes 5 and 3, and sequence analysis also revealed that the three homeologues consisted of 13 and 15 exons, respectively. The total expression analysis indicated that both genes are ubiquitously expressed in shoot and root tissues under chronic as well as transient nitrogen stress. However, they are differentially and contrastingly expressed but almost in a coordinated manner in both the tissues. Under chronic as well as transient stress, both the genes in shoot tissue showed downregulation, lowest at 6 h of transient stress. However, in the root tissue, trend was found opposite except with exceptions. Moreover, all the three homeologues of both the genes were transcribed differentially, and the ratio of the individual homeologues transcripts to total homeologues transcripts also varied with the tissue, i.e., shoots or roots, as well as with nitrogen stress treatments. Thus, cDNA as well as genomic sequence information, apparent expression at different time point of nitrogen stress, and coordination between these enzymes would be ultimately linked to nitrate assimilation and nitrogen use efficiency in wheat.


Assuntos
Citrato (si)-Sintase/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isocitrato Desidrogenase/genética , Nitrogênio/metabolismo , Estresse Fisiológico , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sítios de Ligação , Mapeamento Cromossômico , Cromossomos de Plantas , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , DNA Complementar/genética , Genes de Plantas , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Peso Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...